Skip to main content

Bondage number of mesh networks

Abstract

The bondage number b(G) of a nonempty graph G is the smallest number of edges whose removal from G results in a graph with domination number greater than that of G. Denote P n × P m the Cartesian product of two paths P n and P m . This paper determines the exact values of b(P n × P 2), b(P n × P 3), and b(P n × P 4) for n ⩾ 2.

This is a preview of subscription content, access via your institution.

References

  1. Bauer D, Harary F, Nieminen J, Suffel C L. Domination alteration sets in graphs. Discrete Math, 1983, 47: 153–161

    Article  MathSciNet  MATH  Google Scholar 

  2. Cao J X, Yuan X D, Sohn M Y. Domination and bondage number of C 5 × C n. Ars Combin, 2010, 97A: 299–310

    MATH  Google Scholar 

  3. Cao Y -C, Huang J, Xu J -M. The bondage number of graphs with crossing number less than four. Ars Combin (to appear)

  4. Carlson K, Develin M. On the bondage number of planar and directed graphs. Discrete Math, 2006, 306(8–9): 820–826

    Article  MathSciNet  MATH  Google Scholar 

  5. Chang T Y, Clark W E. The domination numbers of the 5 × n and 6 × n grid graphs. J Graph Theory, 1993, 17: 81–107

    Article  MathSciNet  MATH  Google Scholar 

  6. Chang T Y, Clark W E, Hare E O. Domination numbers of complete grid graphs, I. Ars Combin, 1994, 38: 97–111

    MathSciNet  MATH  Google Scholar 

  7. Dunbar J E, Haynes T W, Teschner U, Volkmann L. Bondage, insensitivity, and reinforcement. In: Haynes T W, Hedetniemi S T, Slater P J, eds. Domination in Graphs: Advanced Topics. Monogr Textbooks Pure Appl Math, 209. New York: Marcel Dekker, 1998, 471–489

    Google Scholar 

  8. Fink J F, Jacobson M S, Kinch L F, Roberts J. The bondage number of a graph. Discrete Math, 1990, 86: 47–57

    Article  MathSciNet  MATH  Google Scholar 

  9. Gonçalves D, Pinlou A, Rao M, Thomassé S. The domination number of grid graphs. SIAM J Discrete Math (to appear)

  10. Hartnell B L, Jorgensen L K, Vestergaard P D, Whitehead C. Edge stability of the k-domination number of trees. Bull Inst Combin Appl, 1998, 22: 31–40

    MathSciNet  MATH  Google Scholar 

  11. Hartnell B L, Rall D F. A characterization of trees in which no edge is essential to the domination number. Ars Combin, 1992, 33: 65–76

    MathSciNet  MATH  Google Scholar 

  12. Hartnell B L, Rall D F. Bounds on the bondage number of a graph. Discrete Math, 1994, 128: 173–177

    Article  MathSciNet  MATH  Google Scholar 

  13. Hattingh J H, Plummer A R. Restrained bondage in graphs. Discrete Math, 2008, 308(23): 5446–5453

    Article  MathSciNet  MATH  Google Scholar 

  14. Hu F -T, Xu J -M. On the complexity of the bondage and reinforcement problems. J Complexity (to appear), DOI: 10.1016/j.jco.2011.11.001

  15. Huang J, Xu J -M. The bondage numbers of extended de Bruijn and Kautz digraphs. Comput Math Appl, 2006, 51(6–7): 1137–1147

    Article  MathSciNet  MATH  Google Scholar 

  16. Huang J, Xu J -M. The bondage number of graphs with small crossing number. Discrete Math, 2007, 307(14): 1881–1897

    Article  MathSciNet  MATH  Google Scholar 

  17. Huang J, Xu J -M. The total domination and bondage numbers of extended de Bruijn and Kautz digraphs. Comput Math Appl, 2007, 53(8): 1206–1213

    Article  MathSciNet  MATH  Google Scholar 

  18. Huang J, Xu J -M. The bondage numbers and efficient dominations of vertex-transitive graphs. Discrete Math, 2008, 308(4): 571–582

    Article  MathSciNet  MATH  Google Scholar 

  19. Jacobson M S, Kinch L F. On the domination number of products of graphs I. Ars Combin, 1984, 18: 33–44

    MathSciNet  MATH  Google Scholar 

  20. Kang L -Y, Sohn M Y, Kim H K. Bondage number of the discrete torus C n × C 4. Discrete Math, 2005, 303: 80–86

    Article  MathSciNet  MATH  Google Scholar 

  21. Kang L -Y, Yuan J -J. Bondage number of planar graphs. Discrete Math, 2000, 222: 191–198

    Article  MathSciNet  MATH  Google Scholar 

  22. Klaviar S, Seifter N. Dominating Cartesian products of cycles. Discrete Appl Math, 1995, 59: 129–136

    Article  MathSciNet  Google Scholar 

  23. Raczek J. Paired bondage in trees. Discrete Math, 2008, 308(23): 5570–5575

    Article  MathSciNet  MATH  Google Scholar 

  24. Sohn M Y, Yuan X D, Jeong H S. The bondage number of C 3 × C n. J Korean Math Soc, 2007, 44(6): 1213–1231

    Article  MathSciNet  MATH  Google Scholar 

  25. Teschner U. A new upper bound for the bondage number of graphs with small domination number. The Australas J Combin, 1995, 12: 27–35

    MathSciNet  MATH  Google Scholar 

  26. Teschner U. The bondage number of a graph G can be much greater than Δ(G). Ars Combin, 1996, 43: 81–87

    MathSciNet  MATH  Google Scholar 

  27. Teschner U. New results about the bondage number of a graph. Discrete Math, 1997, 171: 249–259

    Article  MathSciNet  MATH  Google Scholar 

  28. Teschner U. On the bondage number of block graphs. Ars Combin, 1997, 46: 25–32

    MathSciNet  MATH  Google Scholar 

  29. Topp J, Vestergaard P D. α k and γ k-stable graphs. Discrete Math, 2000, 212: 149–160

    Article  MathSciNet  MATH  Google Scholar 

  30. Xu J -M. Topological Structure and Analysis of Interconnection Networks. Dordrecht /Boston/London: Kluwer Academic Publishers, 2001

    MATH  Google Scholar 

  31. Xu J -M. Theory and Application of Graphs. Dordrecht/Boston/London: Kluwer Academic Publishers, 2003

    MATH  Google Scholar 

  32. Zhang X, Liu J, Meng J -X. The bondage number in complete t-partite digraphs. Inform Process Lett, 2009, 109(17): 997–1000

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Ming Xu.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hu, F., Xu, JM. Bondage number of mesh networks. Front. Math. China 7, 813–826 (2012). https://doi.org/10.1007/s11464-012-0173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-012-0173-x

Keywords

  • Bondage number
  • dominating set
  • domination number
  • mesh network

MSC

  • 05C25
  • 05C40
  • 05C12
  • 05C69