Skip to main content
Log in

A combination of energy method and spectral analysis for study of equations of gas motion

  • Research Article
  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

There have been extensive studies on the large time behavior of solutions to systems on gas motions, such as the Navier-Stokes equations and the Boltzmann equation. Recently, an approach is introduced by combining the energy method and the spectral analysis to the study of the optimal rates of convergence to the asymptotic profiles. In this paper, we will first illustrate this method by using some simple model and then we will present some recent results on the Navier-Stokes equations and the Boltzmann equation. Precisely, we prove the stability of the non-trivial steady state for the Navier-Stokes equations with potential forces and also obtain the optimal rate of convergence of solutions toward the steady state. The same issue was also studied for the Boltzmann equation in the presence of the general time-space dependent forces. It is expected that this approach can also be applied to other dissipative systems in fluid dynamics and kinetic models such as the model system of radiating gas and the Vlasov-Poisson-Boltzmann system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Deckelnick K. Decay estimates for the compressible Navier-Stokes equations in unbounded domains. Math Z, 1992, 209:115–130

    Article  MATH  MathSciNet  Google Scholar 

  2. Deckelnick K. L 2-decay for the compressible Navier-Stokes equations in unbounded domains. Comm Partial Differential Equations, 1993, 18:1445–1476

    Article  MATH  MathSciNet  Google Scholar 

  3. Desvillettes L, Villani C. On the trend to global equilibrium for spatially inhomogeneous kinetic systems: The Boltzmann equation. Invent Math, 2005, 159(2):245–316

    Article  MATH  MathSciNet  Google Scholar 

  4. Duan R-J. The Boltzmann equation near equilibrium states in ℝn. Methods and Applications of Analysis, 2007, 14(3):227–250

    MATH  MathSciNet  Google Scholar 

  5. Duan R-J. On the Cauchy problem for the Boltzmann equation in the whole space: Global existence and uniform stability in L 2ξ (H Nx ). Journal of Differential Equations, 2008, 244:3204–3234

    Article  MATH  MathSciNet  Google Scholar 

  6. Duan R-J. Some Mathematical Theories on the Gas Motion under the Influence of External Forcing. Ph D Thesis. Hong Kong: City University of Hong Kong, 2008

    Google Scholar 

  7. Duan R-J, Liu H-X, Ukai S, Yang T. Optimal L p-L q convergence rates for the Navier-Stokes equations with potential force. Journal of Differential Equations, 2007, 238:220–233

    Article  MATH  MathSciNet  Google Scholar 

  8. Duan R-J, Ukai S, Yang T, Zhao H-J. Optimal decay estimates on the linearized Boltzmann equation with time dependent force and their applications. Comm Math Phys, 2008, 277:189–236

    Article  MATH  MathSciNet  Google Scholar 

  9. Duan R-J, Yang T, Zhu C-J. Navier-Stokes equations with degenerate viscosity, vacuum and gravitational force. Mathematical Methods in the Applied Sciences, 2007, 30:347–374

    Article  MATH  MathSciNet  Google Scholar 

  10. Guo Y. The Boltzmann equation in the whole space. Indiana Univ Math J, 2004, 53:1081–1094

    Article  MATH  MathSciNet  Google Scholar 

  11. Guo Y. Boltzmann diffusive limit beyond the Navier-Stokes approximation. Comm Pure Appl Math, 2006, 59:626–687

    Article  MATH  MathSciNet  Google Scholar 

  12. Hoff D, Zumbrun K. Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z angew Math Phys, 1997, 48:597–614

    Article  MATH  MathSciNet  Google Scholar 

  13. Kawashima S. Systems of a hyperbolic-parabolic composite type, with applications to the equations of magnetohydrodynamics. Thesis. Kyoto: Kyoto University, 1983

    Google Scholar 

  14. Kobayashi T. Some estimates of solutions for the equations of motion of compressible viscous fluid in an exterior domain in ℝ3. J Differential Equations, 2002, 184:587–619

    Article  MATH  MathSciNet  Google Scholar 

  15. Kobayashi T, Shibata Y. Decay estimates of solutions for the equations of motion of compressible viscous and heat-conductive gases in an exterior domain in ℝ3. Commun Math Phys, 1999, 200:621–659

    Article  MATH  MathSciNet  Google Scholar 

  16. Ladyzhenskaya O A. The Mathematical Theory of Viscous Incompressible Flow. 2nd English Ed (revised and enlarged). New York-London-Paris: Science Publishers, 1969, 1–224

    MATH  Google Scholar 

  17. Liu T-P, Wang W-K. The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions. Commun Math Phys, 1998, 196:145–173

    Article  MATH  Google Scholar 

  18. Liu T-P, Yang T, Yu S-H. Energy method for the Boltzmann equation. Physica D, 2004, 188(3–4):178–192

    Article  MATH  MathSciNet  Google Scholar 

  19. Liu T-P, Yu S-H. Boltzmann equation: Micro-macro decompositions and positivity of shock profiles. Commun Math Phys, 2004, 246(1):133–179

    Article  MATH  MathSciNet  Google Scholar 

  20. Liu T-P, Yu S-H. Diffusion under gravitational and boundary effects. Bull Inst Math Acad Sin (N S), 2008, 3:167–210

    MATH  MathSciNet  Google Scholar 

  21. Matsumura A, Nishida T. The initial value problems for the equations of motion of viscous and heat-conductive gases. J Math Kyoto Univ, 1980, 20:67–104

    MATH  MathSciNet  Google Scholar 

  22. Matsumura A, Yamagata N. Global weak solutions of the Navier-Stokes equations for multidimensional compressible flow subject to large external potential forces. Osaka J Math, 2001, 38(2):399–418

    MATH  MathSciNet  Google Scholar 

  23. Nishida T, Imai K. Global solutions to the initial value problem for the nonlinear Boltzmann equation. Publ Res Inst Math Sci, 1976/77, 12:229–239

    Article  MathSciNet  Google Scholar 

  24. Ponce G. Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal, 1985, 9:339–418

    Article  MathSciNet  Google Scholar 

  25. Shibata Y, Tanaka K. Rate of convergence of non-stationary flow to the steady flow of compressible viscous fluid. Comput Math Appl, 2007, 53:605–623

    Article  MATH  MathSciNet  Google Scholar 

  26. Shizuta Y. On the classical solutions of the Boltzmann equation. Commun Pure Appl Math, 1983, 36:705–754

    Article  MATH  MathSciNet  Google Scholar 

  27. Strain R M. The Vlasov-Maxwell-Boltzmann system in the whole space. Commun Math Phys, 2006, 268(2):543–567

    Article  MATH  MathSciNet  Google Scholar 

  28. Strain R M, Guo Y. Almost exponential decay near Maxwellian. Communications in Partial Differential Equations, 2006, 31:417–429

    Article  MATH  MathSciNet  Google Scholar 

  29. Ukai S. On the existence of global solutions of mixed problem for non-linear Boltzmann equation. Proceedings of the Japan Academy, 1974, 50:179–184

    Article  MATH  MathSciNet  Google Scholar 

  30. Ukai S. Les solutions globales de l’’equation de Boltzmann dans l’espace tout entier et dans le demi-espace. C R Acad Sci Paris, 1976, 282A(6):317–320

    MathSciNet  Google Scholar 

  31. Ukai S, Yang T. The Boltzmann equation in the space L 2L β : Global and timeperiodic solutions. Analysis and Applications, 2006, 4: 263–310

    Article  MATH  MathSciNet  Google Scholar 

  32. Ukai S, Yang T, Zhao H-J. Global solutions to the Boltzmann equation with external forces. Analysis and Applications, 2005, 3(2):157–193

    Article  MATH  MathSciNet  Google Scholar 

  33. Ukai S, Yang T, Zhao H-J. Convergence rate for the compressible Navier-Stokes equations with external force. J Hyperbolic Diff Equations, 2006, 3:561–574

    Article  MATH  MathSciNet  Google Scholar 

  34. Ukai S, Yang T, Zhao H-J. Convergence rate to stationary solutions for Boltzmann equation with external force. Chinese Ann Math, Ser B, 2006, 27:363–378

    Article  MATH  MathSciNet  Google Scholar 

  35. Yang T, Zhao H-J. A new energy method for the Boltzmann equation. Journal of Mathematical Physics, 2006, 47:053301

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renjun Duan.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Duan, R., Ukai, S. & Yang, T. A combination of energy method and spectral analysis for study of equations of gas motion. Front. Math. China 4, 253–282 (2009). https://doi.org/10.1007/s11464-009-0020-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-009-0020-x

Keywords

MSC

Navigation