Skip to main content
Log in

Attractors for stochastic lattice dynamical systems with a multiplicative noise

  • Published:
Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

In this paper, we consider a stochastic lattice differential equation with diffusive nearest neighbor interaction, a dissipative nonlinear reaction term, and multiplicative white noise at each node. We prove the existence of a compact global random attractor which, pulled back, attracts tempered random bounded sets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Afraimovich V S, Nekorkin V I. Chaos of traveling waves in a discrete chain of diffusively coupled maps. Int J Bifur Chaos, 1994, 4: 631–637

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold L. Random Dynamical Systems. Berlin: Springer-Verlag, 1998

    MATH  Google Scholar 

  3. Bates P W, Chmaj A. A discrete convolution model for phase transitions. Arch Ration Mech Anal, 1999, 150(4): 281–305

    Article  MathSciNet  MATH  Google Scholar 

  4. Bates P W, Lisei H, Lu K. Attractors for stochastic lattice dynamical systems. Stochastics & Dynamics, 2006, 6(1): 1–21

    Article  MathSciNet  MATH  Google Scholar 

  5. Bates P W, Lu K, Wang B. Attractors for lattice dynamical systems. Int J Bifur Chaos, 2001, 11: 143–153

    Article  MathSciNet  MATH  Google Scholar 

  6. Bell J. Some threshhold results for models of myelinated nerves. Mathematical Biosciences, 1981, 54: 181–190

    Article  MathSciNet  MATH  Google Scholar 

  7. Bell J, Cosner C. Threshold behaviour and propagation for nonlinear differentialdifference systems motivated by modeling myelinated axons. Quarterly Appl Math, 1984, 42: 1–14

    MathSciNet  MATH  Google Scholar 

  8. Caraballo T, Kloeden P E, Schmalfuß B. Exponentially stable stationary solutions for stochastic evolution equations and their perturbation. Applied Mathematics and Optimization, 2004, 50: 183–207

    Article  MathSciNet  MATH  Google Scholar 

  9. Caraballo T, Lukaszewicz G, Real J. Pullback attractors for asymptotically compact nonautonomous dynamical systems. Nonlinear Analysis TMA, 2006, 64(3): 484–498

    Article  MathSciNet  MATH  Google Scholar 

  10. Chow S-N, Mallet-Paret J. Pattern formulation and spatial chaos in lattice dynamical systems: I. IEEE Trans Circuits Syst, 1995, 42: 746–751

    Article  MathSciNet  Google Scholar 

  11. Chow S-N, Mallet-Paret J, Shen W. Traveling waves in lattice dynamical systems. J Diff Eq, 1998, 149: 248–291

    Article  MathSciNet  MATH  Google Scholar 

  12. Chow S-N, Mallet-Paret J, Van Vleck E S. Pattern formation and spatial chaos in spatially discrete evolution equations. Random Computational Dynamics, 1996, 4: 109–178

    MathSciNet  MATH  Google Scholar 

  13. Chow S-N, Shen W. Dynamics in a discrete Nagumo equation: Spatial topological chaos. SIAM J Appl Math, 1995, 55: 1764–1781

    Article  MathSciNet  MATH  Google Scholar 

  14. Chua L O, Roska T. The CNN paradigm. IEEE Trans Circuits Syst, 1993, 40: 147–156

    MathSciNet  MATH  Google Scholar 

  15. Chua L O, Yang L. Cellular neural networks: Theory. IEEE Trans Circuits Syst, 1988, 35: 1257–1272

    Article  MathSciNet  MATH  Google Scholar 

  16. Chua L O, Yang L. Cellular neural networks: Applications. IEEE Trans Circuits Syst, 1988, 35: 1273–1290

    Article  MathSciNet  Google Scholar 

  17. Crauel H. Random point attractors versus random set attractors. J London Math Soc, 2002, 63: 413–427

    Article  MathSciNet  Google Scholar 

  18. Crauel H, Debussche A, Flandoli F. Random Attractors. J Dyn Diff Eq, 1997, 9: 307–341

    Article  MathSciNet  MATH  Google Scholar 

  19. Crauel H, Flandoli F. Attractors for random dynamical systems. Probab Theory Relat Fields, 1994, 100: 365–393

    Article  MathSciNet  MATH  Google Scholar 

  20. Dogaru R, Chua L O. Edge of chaos and local activity domain of Fitz-Hugh-Nagumo equation. Int J Bifurcation and Chaos, 1988, 8: 211–257

    MathSciNet  Google Scholar 

  21. Erneux T, Nicolis G. Propagating waves in discrete bistable reaction diffusion systems. Physica D, 1993, 67: 237–244

    Article  MathSciNet  MATH  Google Scholar 

  22. Flandoli F, Lisei H. Stationary conjugation of flows for parabolic SPDEs with multiplicative noise and some applications. Stoch Anal Appl, 2004, 22 1385–1420

    Article  MathSciNet  MATH  Google Scholar 

  23. Flandoli F, Schmalfuß B. Random attractors for the 3D stochastic Navier-Stokes equation with multiplicative noise. Stochastics and Stochastic Rep, 1996, 59: 21–45

    MATH  Google Scholar 

  24. Imkeller P, Schmalfuß B. The conjugacy of stochastic and random differential equations and the existence of global attractors. J Dyn Diff Eq, 2001, 13: 215–249

    Article  MATH  Google Scholar 

  25. Kapval R. Discrete models for chemically reacting systems. J Math Chem, 1991, 6: 113–163

    Article  MathSciNet  Google Scholar 

  26. Keener J P. Propagation and its failure in coupled systems of discrete excitable cells. SIAM J Appl Math, 1987, 47: 556–572

    Article  MathSciNet  MATH  Google Scholar 

  27. Keener J P. The effects of discrete gap junction coupling on propagation in myocardium. J Theor Biol, 1991, 148: 49–82

    Article  Google Scholar 

  28. Laplante J P, Erneux T. Propagating failure in arrays of coupled bistable chemical reactors. J Phys Chem, 1992, 96: 4931–4934

    Article  Google Scholar 

  29. Mallet-Paret J. The global structure of traveling waves in spatially discrete dynamical systems. J Dynam Differential Equations, 1999, 11(1): 49–127

    Article  MathSciNet  MATH  Google Scholar 

  30. Pérez-Muñuzuri A, Pérez-Muñuzuri V, Pérez-Villar V, et al. Spiral waves on a 2-d array of nonlinear circuits. IEEE Trans Circuits Syst, 1993, 40: 872–877

    Article  MATH  Google Scholar 

  31. Rashevsky N. Mathematical Biophysics. Vol 1. New York: Dover Publications, Inc, 1960

    Google Scholar 

  32. Ruelle D. Characteristic exponents for a viscous fluid subjected to time dependent forces. Commu Math Phys, 1984, 93: 285–300

    Article  MathSciNet  MATH  Google Scholar 

  33. Scheutzow M. Comparison of various concepts of a random attractor: A case study. Arch Math, 2002, 78: 233–240

    Article  MathSciNet  MATH  Google Scholar 

  34. Scott A C. Analysis of a myelinated nerve model. Bull Math Biophys, 1964, 26: 247–254

    Article  Google Scholar 

  35. Shen W. Lifted lattices, hyperbolic structures, and topological disorders in coupled map lattices. SIAM J Appl Math, 1996, 56: 1379–1399

    Article  MathSciNet  MATH  Google Scholar 

  36. Zinner B. Existence of traveling wavefront solutions for the discrete Nagumo equation. J Diff Eq, 1992, 96: 1–27

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kening Lu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Caraballo, T., Lu, K. Attractors for stochastic lattice dynamical systems with a multiplicative noise. Front. Math. China 3, 317–335 (2008). https://doi.org/10.1007/s11464-008-0028-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-008-0028-7

Keywords

MSC

Navigation