Skip to main content
Log in

Recognition by spectrum for finite simple groups of Lie type

Frontiers of Mathematics in China Aims and scope Submit manuscript

Abstract

The goal of this article is to survey new results on the recognition problem. We focus our attention on the methods recently developed in this area. In each section, we formulate related open problems. In the last two sections, we review arithmetical characterization of spectra of finite simple groups and conclude with a list of groups for which the recognition problem was solved within the last three years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Canada)

Instant access to the full article PDF.

Institutional subscriptions

References

  1. Bourbaki N. Groupes et Algèbres de Lie: Chapitres 4–6 (Éléments de Mathématique). Paris: Hermann, 1968; Translation: Lie Groups and Lie Algebras: Chapters 4–6 (Elements of Mathematics). Berlin: Springer, 1989

    Google Scholar 

  2. Brandl R, Shi W J. Finite groups whose element orders are consecutive integers. J Algebra, 1991, 143: 388–400

    Article  MathSciNet  MATH  Google Scholar 

  3. Buturlakin A A. Spectra of finite linear and unitary groups. Algebra and Logic (in press)

  4. Buturlakin A A, Grechkoseeva M A. The cyclic structure of maximal tori of the finite classical groups. Algebra and Logic, 2007, 46(2): 73–89

    Article  MathSciNet  Google Scholar 

  5. Carter R W. Finite Groups of Lie Type: Conjugacy Classes and Complex Characters. New York: John Wiley & Sons, 1985

    MATH  Google Scholar 

  6. Conway J H, Curtis R T, Norton S P, et al. Atlas of Finite Groups. Oxford: Clarendon Press, 1985

    MATH  Google Scholar 

  7. Grechkoseeva M A. On difference between the spectra of the simple groups B n (q) and C n (q). Sib Math J, 2007, 48(1): 73–75

    Article  MathSciNet  Google Scholar 

  8. Grechkoseeva M A. Recognition by spectrum of finite simple linear groups over fields of characteristic 2. Algebra and Logic (in press)

  9. Grechkoseeva M A, Lucido M S, Mazurov V D, et al. On recognition of the projective special linear groups over the binary field. Sib Electron Math Rep, 2005, 2: 253–263 (http://semr.math.nsc.ru)

    MathSciNet  MATH  Google Scholar 

  10. Grechkoseeva M A, Shi W J, Vasilev A V. Recognition by spectrum of L 16(2m). Algebra Colloq, 2007, 14(4): 585–591

    MathSciNet  MATH  Google Scholar 

  11. Kantor W M, Seress A. Prime power graphs for groups of Lie type. J Algebra, 2002, 247: 370–434

    Article  MathSciNet  MATH  Google Scholar 

  12. Kondratiev A S. On prime graph components for the finite simple groups. Mat Sbornik, 1989, 180(6): 787–797 (in Russian)

    Google Scholar 

  13. Mazurov V D. Characterization of groups by arithmetic properties. Algebra Colloq, 2004, 11(1): 129–140

    MathSciNet  MATH  Google Scholar 

  14. Mazurov V D. Groups with a prescribed spectrum. Izv Ural Gos Univ Mat Mekh, 2005, 36(7): 119–138 (in Russian)

    MathSciNet  Google Scholar 

  15. Mazurov V D, Chen G Y. Recognizability of finite simple groups L 4(2m) and U 4(2m) by spectrum. Algebra and Logic (in press)

  16. Mazurov V D, Khukhro E I. The Kourovka Notebook: Unsolved Problems in Group Theory. 16th ed. Novosibirsk: Sobolev Inst Mat, 2006

    MATH  Google Scholar 

  17. Shen R L, Shi W J, Zinovéva M R. Characterization of simple groups B p(3). (in press)

  18. Shi W J. A characteristic property of A 5. J Southwest-China Normal Univ, 1986, 11: 11–14 (in Chinese)

    Google Scholar 

  19. Shi W J. A characterization of the sporadic simple groups by their element orders. Algebra Colloq, 1994, 1(2): 159–166

    MathSciNet  MATH  Google Scholar 

  20. Shi Wujie. Pure quantitative characterization of finite simple groups. Frontiers of Mathematics in China, 2007, 2(1): 123–125

    Article  MathSciNet  Google Scholar 

  21. Testerman D M. A 1-Type overgroups of order p in semisimple algebraic groups and the associated finite groups. J Algebra, 1995, 177(1): 34–76

    Article  MathSciNet  MATH  Google Scholar 

  22. Vasil’ev A V. On connection between the structure of finite group and properties of its prime graph. Sib Math J, 2005, 46(3): 396–404

    Article  Google Scholar 

  23. Vasilev A V. On the recognition by spectrum of finite simple exceptional groups of Lie type. Algebra and Logic (in press).

  24. Vasilev A V, Gorshkov I B. On recognition of finite simple groups with connected prime graph. Sib Math J (in press)

  25. Vasilév A V, Grechkoseeva M A. On recognition of finite simple linear groups by spectrum. Sib Math J, 2005, 46(4): 593–600

    Article  Google Scholar 

  26. Vasilév A V, Vdovin E P. An adjacency criterion for the prime graph of a finite simple group. Algebra and Logic, 2005, 44(6): 381–406

    Article  MathSciNet  Google Scholar 

  27. Williams J S. Prime graph components of finite groups. J Algebra, 1981, 69: 487–513

    Article  MathSciNet  MATH  Google Scholar 

  28. Zavarnitsin A V. Recognition of the simple groups U 3(q) by element orders. Algebra and Logic, 2006, 45(2): 106–116

    Article  MathSciNet  Google Scholar 

  29. Zavarnitsin A V, Mazurov V D. Element orders in coverings of symmetric and alternating groups. Algebra and Logic, 1999, 38(3): 159–170

    Article  MathSciNet  Google Scholar 

  30. Zavarnitsin A V, Mazurov V D. On orders of elements in coverings of simple groups L n (q) and U n (q). Proceedings of the Steklov Institute of Mathematics, 2007, Suppl 1: 145–154

  31. Zavarnitsine A V. Element orders in coverings of the groups L n (q) and recognition of the alternating group A 16. NII Diskret Mat Inform, Novosibirsk, Preprint No. 48, 2000 (in Russian)

  32. Zavarnitsine A V. Properties of element orders in cover of L n (q) and U n (q). Sib Math J (in press)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wujie Shi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grechkoseeva, M.A., Shi, W. & Vasilev, A.V. Recognition by spectrum for finite simple groups of Lie type. Front. Math. China 3, 275–285 (2008). https://doi.org/10.1007/s11464-008-0018-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11464-008-0018-9

Keywords

MSC

Navigation