Skip to main content
Log in

Analysis of maximal-ratio of transmitting/receiving antenna selection with perfect and partial channel information

  • Research Article
  • Published:
Frontiers of Electrical and Electronic Engineering in China

Abstract

To improve system performance and reduce the complexity and cost of receiver hardware, we investigated a new multiple-input multiple-output (MIMO) scheme combining maximal-ratio transmitting and receiver antenna selection (MRT/RAS). In this scheme, a single receiving antenna, which maximizes the signalto-noise ratio (SNR) at the receiver, is selected for demodulation. The closed-form outage probability and the bit error rate (BER) of the MRT/RAS system are both presented. The simulation demonstrates that the MRT/RAS scheme can achieve a full diversity order as if all the receiving antennas were used. It is shown that the MRT/RAS scheme outperforms some more complex space-time codes of the same spectral efficiency. The analytical results are verified by simulation. In the end, we also analyze the MRT/RAS system based on partial channel information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Telatar I E. Capacity of multi-antenna Gaussian channels. European Transactions on Telecommunications, 1999, 10(2): 585–595

    Article  Google Scholar 

  2. Foschini G J, Gans M J. On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications, 1998, 6(3): 311–335

    Article  Google Scholar 

  3. Foschini G J. Layered space-time architecture for wireless communication in a fading environment when using multi-element antennas. Bell Labs Technical Journal, 1996, 1(2): 41–59

    Article  Google Scholar 

  4. Winiters J H. The diversity gain of transmit diversity in wireless systems with Rayleigh fading. IEEE Transactions on Vehicular Technology, 1998, 47(3): 119–123

    Article  Google Scholar 

  5. Weerackody V. Diversity for the direct-sequence spread spectrum system using multiple transmit antennas. In: Proceedings of IEEE International Conference on Communications, 1993, 3: 1775–1779

    Google Scholar 

  6. Alamouti S M. A simple transmit diversity technique for wireless communications. IEEE Journal on Selected Areas in Communications, 1998, 16(8): 1451–1458

    Article  Google Scholar 

  7. Tarokh V, Seshadri N, Calderbank A R. Space-time codes for high data rate wireless communication: performance criterion and code construction. IEEE Transactions on Information Theory, 1998, 44(2): 744–765

    Article  MATH  MathSciNet  Google Scholar 

  8. Lo T K Y. Maximum ratio transmission. IEEE Transactions on Communications, 1999, 47(10): 1458–1461

    Article  Google Scholar 

  9. Vanganuru K, Annamalai A. Analysis of transmit diversity schemes: impact of fade distribution, spatial correlation and channel estimation errors. In: Proceedings of IEEE Wireless Communications and Networking, 2003, 1: 247–251

    Google Scholar 

  10. Cavers J K. Single-user and multiuser adaptive maximal ratio transmission for rayleigh channels. IEEE Transactons on Vehicular Technology, 2000, 49(6): 2043–2050

    Article  Google Scholar 

  11. Brennan D G. Linear diversity combining techniques. In: Proceedings of the IRE 1959, 47(6): 1075–1102

    Article  Google Scholar 

  12. Kim S W, Ha D S, Reed J H. Minimum selection GSC and adaptive low-power Rake combining scheme. In: Proceedings of the 2003 International Symposium on Circuits and Systems (ISCAS’03), 2003, 4: 357–360

    Google Scholar 

  13. Yang H C. Exact performance analysis of minimum-selection generalized selection combining (GSC). In: Proceedings of IEEE International Conference on Communications, 2005, 2: 1152–1156

    Google Scholar 

  14. Thoen S, Van der Perre L, Gyselinckx B, et al. Performance analysis of combined transmit-SC/receive-MRC. IEEE Transactions on Communications, 2001, 49(1): 5–8

    Article  MATH  Google Scholar 

  15. Jakes W C. Microwave Mobile Communications. Piscataway, NJ: IEEE Press, 1994

    Google Scholar 

  16. Eng T, Kong N, Milstein L B. Comparison of diversity combining techniques for Rayleigh-fading channels. IEEE Transactions on Communications, 1996, 44(9): 1117–1129

    Article  Google Scholar 

  17. Bjerke B A, Zvonar Z, Proakis J G. Antenna diversity combining schemes for WCDMA systems in fading multipath channels. IEEE Transactions on Wireless Communications, 2004, 3(1): 97–106

    Article  Google Scholar 

  18. Kang M, Alouini M S. Largest eigenvalue of complex wishart matrices and performance analysis of MIMO MRC systems. IEEE Journal on Selected Areas in Communications, 2003, 21(3): 418–426

    Article  Google Scholar 

  19. Dighe P A, Mallik R K, Jamuar S S. Analysis of transmitreceive diversity in Rayleigh fading. IEEE Transactions on Communications, 2003, 51(4): 694–703

    Article  Google Scholar 

  20. Grant A J. Performance analysis of transmit beamforming. IEEE Transactions on Communications, 2005, 53(4): 738–744

    Article  MathSciNet  Google Scholar 

  21. David H A. Order Statistics. New York: Wiley, 1970

    MATH  Google Scholar 

  22. Proakis J G. Digital Communications, 4th ed. New York: McGraw-Hill, 2001

    Google Scholar 

  23. Chennakeshu S, Anderson J B. Error rates for Rayleigh fading multichannel reception of MPSK signals. IEEE Transactions on Communications,1995,43(234): 338–346

    Article  Google Scholar 

  24. Paulraj A, Nabar R, Gore D. Introduction to Space-Time Wireless Communications, 1st ed. England: Cambridge Uiversity Press, 2003

    Google Scholar 

  25. Goeckel D L. Adaptive coding for time-varying channels using outdated fading estimates. IEEE Transactions on Communications, 1999, 47(6): 844–855

    Article  Google Scholar 

  26. Goldsmith A J, Chua S G. Variable-rate variable-power MQAM for fading channels. IEEE Transactions on Communications, 1997, 45(10): 1218–1230

    Article  Google Scholar 

  27. Visotsky E, Madhow U. Space-time transmit precoding with imperfect feedback. IEEE Transactions on Information Theory, 2001, 47(6): 2632–2639

    Article  MathSciNet  Google Scholar 

  28. Wong K K, Cheng R S K, Letaief K B, et al. Adaptive antennas at the mobile and base stations in an OFDM/TDMA system. IEEE Transactions on Communications. 2001, 49(1): 195–206

    Article  MATH  Google Scholar 

  29. Xia P F, Zhou S L, Giannakis G B. Adaptive MIMO OFDM based on partial channel state information. IEEE Transactions on Signal Processing, 2004, 52(1): 202–213

    Article  MathSciNet  Google Scholar 

  30. Hu Z P, Zhu G X, Xia Y, et al. Multiuser subcarrier and bit allocation for MIMO-OFDM systems with perfect and partial channel information. In: Proceedings of IEEE Wireless Communications and Networking Conference, 2004, 2: 1188–1193

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangxi Zhu.

About this article

Cite this article

Xiao, X., Zhu, G., Zhou, L. et al. Analysis of maximal-ratio of transmitting/receiving antenna selection with perfect and partial channel information. Front. Electr. Electron. Eng. China 3, 411–417 (2008). https://doi.org/10.1007/s11460-008-0060-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11460-008-0060-0

Keywords

Navigation