Skip to main content
Log in

Dynamic lattice searching methods for optimization of clusters

  • Feature Article
  • Published:
Frontiers of Chemistry in China

Abstract

Global optimization of clusters is a subject of intense interest in computational chemistry. Especially for large clusters, locating the global minima is a challenging problem. Two strategies are generally used for the problem, i.e., the stochastic optimization and the static modeling strategy. The former is known as unbiased global optimization method, while the latter is more efficient but biased. This review describes the development of a dynamic lattice searching (DLS) approach. In DLS, the lattices are constructed dynamically and optimization is achieved by searching these lattices. Therefore, DLS possesses the characteristics of both the stochastic and static methods. With the aim of improving the efficiency of DLS for optimization of large clusters, several variants of the method have been developed. The results show that DLS methods may be promising tools for fast modeling of large clusters. With this review, greater interests are expected for global optimization of atomic or molecular clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Castleman, A. W. Jr.; Keesee, R. G., Science 1988, 241, 36

    Article  CAS  Google Scholar 

  2. Estela, B. B.; Khanna, S. N., Phys. Rev. Lett. 1988, 61, 1477

    Article  Google Scholar 

  3. Tersoff, J., Phys. Rev. B 1988, 37, 6991

    Article  Google Scholar 

  4. Bolding, B. C.; Andersen, H. C., Phys. Rev. B 1990, 41, 10568

    Article  CAS  Google Scholar 

  5. Lee, J.; Lee, I. H.; Lee J., Phys. Rev. Lett. 2003, 91, 080201

    Article  CAS  Google Scholar 

  6. Leary, R. H.; Doye, J. P. K., Phys. Rev. E 1999, 60, 6320

    Article  Google Scholar 

  7. Wales, D. J.; Scheraga, H. A., Science 1999, 285, 1368

    Article  CAS  Google Scholar 

  8. Deaven, D. M.; Ho, K. M., Phys. Rev. Lett. 1995, 75, 288

    Article  CAS  Google Scholar 

  9. Hartke, B., J. Comput. Chem. 1999, 20, 1752

    Article  CAS  Google Scholar 

  10. Johnston, R. L., Dalton Trans. 2003, 22, 4193

    Article  CAS  Google Scholar 

  11. Li, Z.; Scheraga, H. A., Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 6611

    Article  CAS  Google Scholar 

  12. Wales, D. J.; Doye, J. P. K., J. Phys. Chem. A 1997, 101, 5111

    Article  CAS  Google Scholar 

  13. Leary, R. H., J. Global. Optim. 2000, 18, 367

    Article  Google Scholar 

  14. Goedecker, S., J. Chem. Phys. 2004, 120, 9911

    Article  CAS  Google Scholar 

  15. Bao, K.; Goedecker, S.; Koga, K.; Lancon, F.; Neelov A., Phys. Rev. B 2009, 79, 041405

    Article  CAS  Google Scholar 

  16. Cheng, L. J.; Feng, Y.; Yang, J.; Yang J. L., J. Chem. Phys. 2009, 130, 214112

    Article  CAS  Google Scholar 

  17. Kirkpatrick, S.; Gelatt, Jr C. D.; Vecchi, M. P., Science 1983, 220, 671

    Article  Google Scholar 

  18. Krivov, S. V., Phys. Rev. E 2002, 66, 025701

    Article  CAS  Google Scholar 

  19. Takeuchi, H., J. Chem. Inf. Model. 2006, 46, 2066

    Article  CAS  Google Scholar 

  20. Pappu, R. V.; Hart, R. K.; Ponder, J. W., J. Phys. Chem. B 1998, 102, 9725

    Article  CAS  Google Scholar 

  21. Ma, J.; Straub, J. E., J. Chem. Phys. 1994, 101, 533

    Article  CAS  Google Scholar 

  22. Xue, G. L., J. Global Optim. 1994, 4, 187

    Article  Google Scholar 

  23. Deaven, D. M.; Tit, N.; Morris, J. R.; Ho, K. M., Chem. Phys. Lett. 1996, 256, 195

    Article  CAS  Google Scholar 

  24. Pullan, W., J. Comput. Chem. 2005, 26, 899

    Article  CAS  Google Scholar 

  25. While, R. P.; Mayne, H. R., Chem. Phys. Lett. 1998, 289, 463

    Article  Google Scholar 

  26. Cai, W. S.; Shao, X. G., J. Comput. Chem. 2002, 23, 427

    Article  CAS  Google Scholar 

  27. Cai, W. S.; Jiang, H. Y.; Shao, X. G., J. Chem. Inf. Comp. Sci. 2002, 42, 1099

    CAS  Google Scholar 

  28. Shao, X. G.; Cheng, L. J.; Cai, W. S., J. Chem. Phys. 2004, 120, 11401

    Article  CAS  Google Scholar 

  29. Wu, X.; Cai, W. S.; Shao, X. G., J. Comput. Chem. 2009, 30, 1992

    Article  CAS  Google Scholar 

  30. Jiang, H. Y.; Cai, W. S.; Shao, X. G., Phys. Chem. Chem. Phys. 2002, 4, 4782

    Article  CAS  Google Scholar 

  31. Shao, X. G.; Jiang, H. Y.; Cai, W. S., J. Chem. Inf. Comput. Sci. 2004, 44, 193

    CAS  Google Scholar 

  32. Northby, J. A.; J. Chem. Phys. 1987, 87, 6166

    Article  CAS  Google Scholar 

  33. Romero, D.; Barron, C.; Gomez, S., Comput. Phys. Commun. 1999, 123, 87

    Article  CAS  Google Scholar 

  34. Xiang, Y. H.; Jiang, H. Y.; Cai, W. S.; Shao X. G., J. Phys. Chem. A 2004, 108, 3586

    Article  CAS  Google Scholar 

  35. Xiang, Y. H.; Cheng, L. J.; Cai, W. S.; Shao, X. G., J. Phys. Chem. A 2004, 108, 9516

    Article  CAS  Google Scholar 

  36. Van de Waal, B. W., J. Chem. Phys. 1993, 98, 4909

    Article  Google Scholar 

  37. Cleveland, C. L.; Landman, U., J. Chem. Phys. 1991, 94, 7376

    Article  CAS  Google Scholar 

  38. Besley, N. A.; Johnston, R. L.; Stace, A. J.; Uppenbrink, J., J. Mol. Struct.: THEOCHEM 1995, 341, 75

    Article  CAS  Google Scholar 

  39. Hearn, J. E.; Johnston, R. L., J. Chem. Phys. 1997, 107, 4674

    Article  CAS  Google Scholar 

  40. Shao, X. G.; Cheng, L. J.; Cai, W. S., J. Comput. Chem. 2004, 25, 1693

    Article  CAS  Google Scholar 

  41. Yang, X. L.; Cai, W. S.; Shao, X. G., J. Comput. Chem. 2007, 28, 1427

    Article  CAS  Google Scholar 

  42. Shao, X. G.; Yang, X. L.; Cai, W. S., J. Comput. Chem. 2008, 29, 1772

    Article  CAS  Google Scholar 

  43. Liu, D. C.; Nocedal, J., Math. Program. 1989, 45, 503

    Article  Google Scholar 

  44. Eachus, R. S.; Marchetti, A. P.; Muenter, A. A., Annu. Rev. Phys. Chem. 1999, 50, 117

    Article  CAS  Google Scholar 

  45. Kim, S. H.; Medeiros-Ribeiro, G.; Ohlberg, D. A. A.; Stanley-Williams, R.; Heath, J. R., J. Phys. Chem. B 1999, 103, 10341

    Article  CAS  Google Scholar 

  46. Zhan, H.; Cheng, L. J.; Cai, W. S.; Shao, X. G., Chem. Phys. Lett. 2006, 422, 358

    Article  CAS  Google Scholar 

  47. Shao, X. G.; Liu, X. M.; Cai, W. S., J. Chem. Theo. Comput. 2005, 1, 762

    Article  CAS  Google Scholar 

  48. Wales, D. J.; Doye, J. P. K.; Dullweber, A.; Hodges, M. P.; Naumkin, F. Y.; Calvo, F.; Hernández-Rojas, J.; Middleton, T. F., The Cambridge Cluster Database (CCD), available at http://www-wales.ch.cam.ac.uk/CCD.html

  49. Cheng, L. J.; Yang, J. L., J. Chem. Phys. 2007, 127, 124104

    Article  CAS  Google Scholar 

  50. Hagen, M. H. J.; Meijer, E. J.; Mooij, G. C. A. M.; Frenkel, D.; Lekker-kerker, H. N. W., Nature 1993, 365, 425

    Article  CAS  Google Scholar 

  51. Girifalco, L. A., J. Phys. Chem. 1992, 96, 858

    Article  CAS  Google Scholar 

  52. Cheng, L. J.; Cai, W. S.; Shao, X. G., Chem. Phys. Chem. 2005, 6, 261

    CAS  Google Scholar 

  53. Doye, J. P. K.; Miller, M. A.; Wales, D. J., J. Chem. Phys. 1999, 110, 6896

    Article  CAS  Google Scholar 

  54. Doye, J. P. K., Phys. Rev. Lett. 2002, 88, 238701

    Article  CAS  Google Scholar 

  55. Cheng, L. J.; Cai, W. S.; Shao, X. G., Chem. Phys. Chem. 2007, 8, 569

    CAS  Google Scholar 

  56. Yang, X. L., Ph. D. dissertation, X. L., Anal. Chem., Univ. Nankai, 2008 (in Chinese)

  57. Yang, X. L.; Cai, W. S.; Shao, X. G., J. Phys. Chem. A 2007, 111, 5048

    Article  CAS  Google Scholar 

  58. Shao, X. G.; Yang, X. L.; Cai, W. S., Chem. Phys. Lett. 2008, 460, 315

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xueguang Shao.

Additional information

Xueguang SHAO was born in Shandong province in 1963. He graduated from Liaocheng University in 1984 and received his Ph. D. in chemistry from University of Science and Technology of China (USTC) in 1992. He had been working in USTC from 1992 to 2005, and now is a professor of chemistry at the College of Chemistry, Nankai University. His research interests are the development of chemometric methods for chemical studies, including analytical signal processing and molecular simulation.

About this article

Cite this article

Shao, X., Wu, X. & Cai, W. Dynamic lattice searching methods for optimization of clusters. Front. Chem. China 4, 335–342 (2009). https://doi.org/10.1007/s11458-009-0104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-009-0104-x

Keywords

Navigation