Skip to main content
Log in

Organic reactions catalyzed by 1, 4-diazabicyclo [2.2.2] octane (DABCO)

  • Research Article
  • Published:
Frontiers of Chemistry in China

Abstract

The organic reactions catalyzed by 1, 4-diazabicyclo [2.2.2] octane (DABCO) are reviewed. Most of the reactions start conveniently from available substrate and proceed under mild conditions. The reactions are environmentally friendly and the catalyst can be recycled in some cases. The perspectives on DABCO-catalyzed reactions are pointed out.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baylis A B, Hillman M E D. Offenlegungsschrift 2155113, 1972; U.S. Patent 3,743,669; Chem Abstr, 1972, 77, 34174q

  2. Rafel S, Leahy J W. An unexpected rate acceleration-practical improvements in the Baylis-Hillman reaction. J Org Chem, 1997, 62(5): 1521–1552

    Article  CAS  Google Scholar 

  3. Kaye P T, Nocanda X W. Application of Baylis-Hillman methodology in a chemoselective synthesis of 3-acyl-2H-1-chromenes. J Chem Soc, Perkin Trans, 2000, 1: 1331–1332

    Article  Google Scholar 

  4. Lee K Y, Kim J M, Kim J N. Facile synthesis of 3-alkylidene-3H-isobenzofuranones from the Baylis-Hillman reaction of 2-carboxybenzaldehyde. Synlett, 2003, (3): 357–360

  5. Faltin C, Fleming E M, Connon S J. Acrylamide in the Baylis-Hillman reaction: expanded reaction scope and the unexpected superiority of DABCO over more basic tertiary Amine catalysts. J Org Chem, 2004, 69(19): 6496–6499

    Article  CAS  Google Scholar 

  6. Kaye P T, Nocanda X W. A convenient general synthesis of 3-substituted 2H-chromene derivatives. J Chem Soc, Perkin Trans, 2002, 1: 1318–1323

    Article  Google Scholar 

  7. Coelho F, Almeida W P, Veronese D, Mateus C R, Silva Lopes E C, Rossi R C, Silveira G P C, Pavam C H. Ultrasound in Baylis-Hillman reactions with aliphatic and aromatic aldehydes: scope and limitations. Tetrahedron, 2002, 58(37): 7437–7447

    Article  CAS  Google Scholar 

  8. De Souza R O M A, Meireles B A, Aguiar L C S, Vasconcellos M L A A. Hexamethylenetetramine as a cheap and convenient alternative catalyst in the Baylis-Hillman reaction: synthesis of aromatic compounds with anti-malarial activity. Synthesis, 2004, (10): 1595–1600

  9. Areces P, Carrasco E, Mancha A, Plumet J. Tandem B-elimination-morita-Baylis-Hillman reaction in A,B-unsaturated sugar aldehydes. Synthesis, 2006, (6): 946–948

  10. Shi M, Li C Q, Jiang J K. Reexamination of the traditional Baylis-Hillman reaction. Tetrahedron, 2003, 59(8): 1181–1189

    Article  CAS  Google Scholar 

  11. Raheem I T, Jacobsen E N. Highly enantioselective aza-Baylis-Hillman reactions catalyzed by chiral thiourea derivatives. Adv Synth Catal, 2005, 347: 1701–1708

    Article  CAS  Google Scholar 

  12. Drewes S E, Emslie N D, Karodia N, Khan A A. Facile diastereoselective synthesis of 2,6-dialkyl-5-methylene-1,3-dioxan-4-ones via A-activated vinyl esters. Chem Ber, 1990, 123: 1447–1448

    Article  CAS  Google Scholar 

  13. Matsuya Y, Hayashi K, Nemoto H. A novel modified Baylis-Hillman reaction of propiolate. J Am Chem Soc, 2003, 125(3): 646–647

    Article  CAS  Google Scholar 

  14. Shi M, Zhao G L. Aza-Baylis-Hillman reactions of diisopropyl azodicarboxylate or diethyl azodicarboxylate with acrylates and acrylonitrile. Tetrahedron, 2004, 60(9): 2083–2089

    Article  CAS  Google Scholar 

  15. Turki T, Villiéras J, Amri H. An efficient synthesis of alkyl A-(hydroxymethyl)acrylates induced by DABCO in an aqueous medium. Tetrahedron letters, 2005, 46(17): 3071–3072

    Article  CAS  Google Scholar 

  16. Saxena R, Patra A, Batra S. An alternate route to substituted 1, 4-pentanedienes through acetates of Baylis-Hillman adducts in aqueous medium. Synlett, 2003, (10): 1439–1442

  17. Yu C Z, Lin B, Hu L. Efficient Baylis-Hillman reaction using stoichiometric base catalyst and an aqueous medium. J Org Chem, 2001, 66(16): 5413–5418

    Article  CAS  Google Scholar 

  18. Papageorgiou C D, Ley S V, Gaunt M J. Organic-catalyst-mediated cyclopropanation reaction. Angew Chem Int Ed, 2003, 42(7): 828–831

    Article  CAS  Google Scholar 

  19. Bremeyer N, Smith S C, Ley S V, Gaunt M J. An intramolecular organocatalytic cyclopropanation reaction. Angew Chem, 2004, 116: 2735–2738

    Article  Google Scholar 

  20. Papageorgiou C D, Cubillo de Dios M A, Ley S V, Gaunt M J. Enantioselective organocatalytic cyclopropanation via ammonium ylides. Angew Chem Int Ed, 2004, 43: 4641–4644

    Article  CAS  Google Scholar 

  21. Kimachi T, Kinoshita H, Kusaka K, Takeuchi Y, Aoe M, Juichi M. The highly trans-selective darzens reaction via ammonium ylides. Synlett, 2005, (5): 842–844

  22. Zhao G L, Shi M. Aza-Baylis-Hillman reactions of N-tosylated aldimines with activated allenes and alkynes in the presence of various Lewis Base promoters. J Org Chem, 2005, 70(24): 9975–9984

    Article  CAS  Google Scholar 

  23. Yang Z J, Fan M J, Mu R Z, Liu W M, Liang Y M. A facile synthesis of highly functionalized dihydrofurans based on 1, 4-diazabicyclo[2.2.2]octane(DABCO) catalyzed reaction of halides with enones. Tetrahedron, 2005, 61(38): 9140–9146

    Article  CAS  Google Scholar 

  24. Shi L, Han Y, Yang Z J, Liu W M, Liang Y M. Stereoselective synthesis of trans-B-substituted X-ferrocenyl-X-butyrolactones via ammonium ylides. Synthesis, 2005, (17): 2851–2856

  25. Fan M J, Yan Z Y, Liu W M, Liang Y M. DABCO-Catalyzed reaction of A-halo carbonyl compounds with dimethyl acetylenedicarboxylate: a novel method for the preparation of polysubstituted furans and highly functionalized 2H-pyrans. J Org Chem, 2005, 70(20): 8204–8207

    Article  CAS  Google Scholar 

  26. Fan M J, Guo L N, Liu X Y, Liu W M, Liang Y M. A mild, convenient and efficient single-step method for the synthesis of polysubstituted furans via ammonium ylide routes. Synthesis, 2005, (3): 391–396

  27. Fan M J, Li G Q, Liang Y M. DABCO catalyzed reaction of various nucleophiles with activated alkynes leading to the formation of alkenoic acid esters, 1,4-dioxane, morpholine, and piperazinone derivatives. Tetrahedron, 2006, 62(29): 6782–6791

    Article  CAS  Google Scholar 

  28. Fan M J, Li G Q, Li L H, Yang S D, Liang Y M. DABCO-Catalyzed reaction of phenols or 1,2-diphenols with activated alkynes leading to the formation of alkenoic acid esters or 1,3-dioxole derivatives. Synthesis, 2006, (14): 2286–2292

  29. Shi Y L, Shi M. DABCO-Catalyzed reaction of allenic esters and ketones with salicyl N-tosylimines: synthesis of highly functionalized chromenes. Org Lett, 2005, 7(14): 3057–3060

    Article  CAS  Google Scholar 

  30. Shi Y L, Shi M. Synthesis of substituted chromenes through the DABCO-Catalyzed reaction of but-3-yn-2-one and methyl propiolate with salicyl N-tosylimines. Chem Eur J, 2006, 12: 3374–3378

    Article  CAS  Google Scholar 

  31. Li J H, Liu W J. DABCO as an inexpensive and highly efficient ligand for palladium-catalyzed Suzuki-Miyaura cross-coupling reaction. Org Lett, 2004, 6(16): 2809–2811

    Article  CAS  Google Scholar 

  32. Li J H, Hu X C, Liang Y, Xie Y X. PEG-400 promoted Pd (OAc)2/DABCO-catalyzed cross-coupling reactions in aqueous media. Tetrahedron, 2006, 62(1): 31–38

    Article  CAS  Google Scholar 

  33. Li J H, Liu W J, Xie Y X. Recyclable and Reusable Pd(OAc)2/DABCO/PEG-400 system for Suzuki-Miyaura cross-coupling reaction. J Org Chem, 2005, 70(14): 5409–5412

    Article  CAS  Google Scholar 

  34. Li J H, Wang D P. CuI/DABCO-Catalyzed cross-coupling reactions of aryl halides with arylboronic acids. Eur J Org Chem, 2006, 2063–2066

  35. Li J H, Liang Y, Wang D P, Liu W J, Xie Y X, Yin D L. Efficient Stille cross-coupling reaction catalyzed by the Pd(OAc)2/DABCO catalytic system. J Org Chem, 2005, 70(7): 2832–2834

    Article  CAS  Google Scholar 

  36. Li J H, Deng C L, Liu W J, Xie Y X. Pd(OAc)2/DABCO as an inexpensive and efficient catalytic system for Hiyama cross-coupling reactions of aryl halides with aryltrimethoxysilanes. Synthesis, 2005, (18): 3039–3044

  37. Li J H, Zhu Q M, Xie Y X. Pd(OAc)2/DABCO-catalyzed Suzuki-Miyaura cross-coupling reaction in DMF. Tetrahedron, 2006, 62(47): 10888–10895

    Article  CAS  Google Scholar 

  38. Xie Y X, Li J H, Yin D L. Amines as the ligands for Palladium-catalyzed coupling reaction. Chinese Journal of Organic Chemistry, 2006, 26(8): 1155–1163

    CAS  Google Scholar 

  39. Li J H, Zhang X D, Xie Y X. Efficient and copper-free Pd(OAc)2/DABCO-catalyzed Sonogashira cross-coupling reaction. Synthesis, 2005, (5): 804–808

  40. Li J H, Wang D P, Xie Y X. Pd(OAc)2/DABCO as a highly active catalytic system for the Heck reaction. Synthesis, 2005, (13): 2193–2197

  41. Li J H, Wang D P, Xie Y X. CuI/DABCO as a highly active catalytic system for the Heck-type reaction. Tetrahedron letters, 2005, 46(30): 4941–4944

    Article  CAS  Google Scholar 

  42. Shieh W C, Dell S, Bach A, Repič O, Blacklock T J. Dual nucleophilic catalysis with DABCO for the N-methylation of Indoles. J Org Chem, 2003, 68(5): 1954–1957

    Article  CAS  Google Scholar 

  43. Shieh W C, Lozanov M, Loo M, Repic O, Blacklock T J. DABCO-and DBU-accelerated green chemistry for N-, O-, and S-benzylation with dibenzyl carbonate. Tetrahedron letters, 2003, 44(24): 4563–4565

    Article  CAS  Google Scholar 

  44. Lesch B, Toräng J, Vanderheiden S, Bräse S. Base-catalyzed condensation of 2-hydroxybenzaldehydes with A,B-unsaturated aldehydes-scope and limitations. Adv Synth Catal, 2005, 347: 555–562

    Article  CAS  Google Scholar 

  45. Sonye J P, Koide K. On the mechanism of DABCO-catalyzed isomerization of X-hydroxy-A,B-alkynoates to X-oxo-A, B-(E)-alkenoates. Org Lett, 2006, 8(2): 199–202

    Article  CAS  Google Scholar 

  46. Sonye J P, Koide K. Base-catalyzed stereoselective isomerization of electron-deficient propargylic alcohols to E-enones. J Org Chem, 2006, 71(16): 6254–6257

    Article  CAS  Google Scholar 

  47. Fioravanti S, Colantoni D, Pellacani L, Tardella P A. Aziridines versus vinyl carbamates from the direct amination of electron-withdrawing group-substituted trifluoromethyl enoates. J Org Chem, 2005, 70(8): 3296–3298

    Article  CAS  Google Scholar 

  48. Uozumi Y, Arii T, Watanabe T. Double carbonylation of aryl iodides with primary amines under atmospheric pressure conditions using the Pd/PPh3/DABCO/THF system. J Org Chem, 2001, 66(15): 5272–5247

    Article  CAS  Google Scholar 

  49. Shi Y J, Humphrey G, Maligres P E, Reamer R A, Michael Williams J. Highly regioselective DABCO-catalyzed nucleophilic aromatic substitution reaction of methyl 2,6-dichloronicotinate with phenols. Adv Synth Catal, 2006, 348: 309–312

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hua Yang.

Additional information

__________

Translated from Chemistry online, 2007, 70(10): 759–765 [译自: 化学通报]

About this article

Cite this article

Yang, H., Tian, R. & Li, Y. Organic reactions catalyzed by 1, 4-diazabicyclo [2.2.2] octane (DABCO). Front. Chem. China 3, 279–287 (2008). https://doi.org/10.1007/s11458-008-0049-5

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-008-0049-5

Keywords

Navigation