Skip to main content
Log in

Calix[4]arene based selective fluorescent chemosensor for organic acid recognition

  • Research Article
  • Published:
Frontiers of Chemistry in China

Abstract

A novel calix[4]arene-based fluorescent chemosensor bearing a 2-aminopyridine moiety and a naphthalenic fluorophore was synthesized The chemical structure of the product was elucidated by FT-IR, MS-FAB, NMR and elemental analyses. Then, the properties and identification mechanism of the synthesized chemosensor were investigated. The results show that the chemosensor exhibits selective fluorescent quenching in the presence of aromatic organic acid in acetonitrile solution, and that the binding ability of the chemosensor with organic acid is in the order of p-cyanic-benzyl acid > p-chloric-benzyl acid > p-methoxyl-benzyl acid > benzyl acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Steed J W, Atwood J L. Supramolecular chemistry. Chichester: John Wiley and Sons Ltd, 2000

    Google Scholar 

  2. Schneider H J, Yatsimirsky A. Principles and methods in supramolecular chemistry. Chichester: John Wiley and Sons Ltd, 2000

    Google Scholar 

  3. Desvergne J P, Czarnik A W. Chemosensors of ion and molecule recognition. Dordrecht: NATO ASI Series, Kluwer Academic, 1997

    Google Scholar 

  4. Czarnik A W. Fluorescent Chemosensors for Ion and Molecule Recognition. ACS Symposium Series No 538. Washington: American Chemical Society, 1992

    Google Scholar 

  5. Zhang M Q, Shen H F, Yang Z R, Chen H Q, Wong K Y. Development of oxygen sensor based on luminescence quenching (I)-Synthesis and Selection of Indicators. Journal of South China University of Technology: Natural Science Edition, 2001, 29(1): 51–55 (in Chinese)

    CAS  Google Scholar 

  6. Ikeda A, Shinkai S. Novel cavity design using calix [n] arene skeletons: Toward molecular recognition and metal binding. Chem Rev, 1997, 97(5): 1713–1734

    Article  CAS  Google Scholar 

  7. Goswami S, Ghosh K, Dasgupta S. Troger’s base molecular scaffolds in dicarboxylic acid recognition. J Org Chem, 2000, 65(7): 1907–1914

    Article  CAS  Google Scholar 

  8. Benito H M, Gomez-Garcia M, Jimenez Blanco J L, Ortiz Mellet C, Garcia Fernandez J M. Carbohydrate-based receptors with multiple thiourea binding sites: Multipoint hydrogen bond recognition of dicarboxylates and monosaccharides. J Org Chem, 2001, 66(4): 1366–1369

    Article  CAS  Google Scholar 

  9. Watanabe S, Higashi N, Kobayashi M, Hamanaka K, Takata Y, Yoshida K. Stereoselective optical sensing of dicarboxylate anions by an inducedfit type Ru (II) receptor. Tetrahedron Lett, 2000, 41(21): 4583–4586

    Article  CAS  Google Scholar 

  10. Carr J D, Coles S J, Hursthouse M B, Light M E, James H R, Westwood T J. Redoxswitched control of binding strength in hydrogen-bonded metallocene complexes. Angew Chem Int Ed Engl, 2000, 39(18): 3296–3299

    Article  CAS  Google Scholar 

  11. Albert J S, Goodman M S, Hamilton A D. Molecular recognition of proteins: Sequence-selective binding of aspartate pairs in helical pep tides. J Am Chem Soc, 1995, 117(3): 1143–1144

    Article  CAS  Google Scholar 

  12. Lakowicz J R. Princip les of fluorescence spectroscopy. 2nd ed. New York: Kluwer A cademico Plenum Publishers, 1999

    Google Scholar 

  13. Jaime C, De Mendoza Javier, Prados P, Nieto P M, Sanchez C. Carbon-13NMR chemical shifts: a single rule to determine the conformation of calix[4]arenes. J Org Chem, 1991, 56(10): 3372–3376

    Article  CAS  Google Scholar 

  14. Matsumoto H, Shinkai S. Metal-induced conformational change in pyrene-appended calix[4] crown-4 which is useful for metal sensing and guest tweezing. Tetrahedron Lett, 1996, 37(1): 77–80

    Article  CAS  Google Scholar 

  15. Krauss R, Weinig H G, Seydack M, Bendig J, Koert U. Molecular signal transduction through conformational transmission of a perhydroanthracene transducer. Angew Chem Int Ed, 2000, 39(10): 1835–1837

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junmin Liu.

Additional information

__________

Translated from Journal of South China University of Technology (Natural Science Edition), 2007, 35(4): 20–24 [译自: 华南理工大学学报(自然科学版)]

About this article

Cite this article

Wang, R., Bu, J., Liu, J. et al. Calix[4]arene based selective fluorescent chemosensor for organic acid recognition. Front. Chem. China 3, 348–352 (2008). https://doi.org/10.1007/s11458-008-0048-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-008-0048-6

Keywords

Navigation