Frontiers of Chemistry in China

, Volume 2, Issue 2, pp 156–163 | Cite as

Molecular simulation of water behaviors on crystal faces of hydroxyapatite

  • Pan Haihua 
  • Tao Jinhui 
  • Wu Tao 
  • Tang Ruikang 
Research Article


The water behavior on (001) and (100) crystal faces of hydroxyapatite (HAP) were studied using molecular dynamics (MD) simulations. The study showed that the water molecules between the HAP faces were under conditions of strong electrical field and high pressure, and hence formed 2–3 well-organized water layers on the crystal surfaces. These structured water layers had ice-like features. Compared with the crystallographic [100] direction of HAP, the polarity along the [001] direction was stronger, which resulted in more structured water layers on the surface. The interaction of water molecules with the calcium and phosphate sites at the HAP-water interface was also studied. The results indicated the multiple pathways of water adsorption onto the HAP surfaces. This study revealed the formation and the detailed structure of water layers on HAP surfaces and suggested that the interfacial water played an important role in stabilizing the HAP particles in aqueous solutions.


hydroxyapatite structured water layer adsorption interface molecular simulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Mathew M, Takagi S. Structures of biological minerals in dental research. J Res Natl Inst Stand Technol, 2001, 106(6): 1035–1044Google Scholar
  2. 2.
    Demer L L, Tintut Y. Mineral exploration: Search for the mechanism of vascular calcification and beyond: The 2003 Jeffrey M. Hoeg award lecture. Arterioscler Thromb Vasc Biol, 2003, 23(10): 1739–1743CrossRefGoogle Scholar
  3. 3.
    Hayes C W, Conway W F. Calcium hydroxyapatite deposition disease. Radiographics, 1990, 10(6): 1031–1048Google Scholar
  4. 4.
    Hauptmann S, Dufner H, Kast S M, Berry R S. Potential energy function for apatites. Phys Chem Chem Phys, 2003, 5(3): 635–639CrossRefGoogle Scholar
  5. 5.
    Zahn D, Hochrein O. Computational study of interfaces between hydroxyapatite and water. Phys Chem Chem Phys, 2003, 5(18): 4004–4007CrossRefGoogle Scholar
  6. 6.
    Mkhonto D, de Leeuw NH. A computer modeling study of the effect of water on the surface structure and morphology of fluorapatite: Introducing a Ca10(PO4)6F2 potential model. J Mater Chem, 2002, 12(9): 2633–2642CrossRefGoogle Scholar
  7. 7.
    Park C, Fenter P, Zhang, Z, Cheng L W, Sturchio N C. Structure of the fluorapatite (100)-water interface by high-resolution X-ray reflectivity. Am Mineral, 2004, 89(11–12): 1647–1654Google Scholar
  8. 8.
    Reedijk M F, Arsic J, Hollander F F A, de Vries S A, Vlieg E. Liquid order at the interface of KDP crystals with water: Evidence for ice-like layers. Phys Rev Lett, 2003, 90(6): 066103Google Scholar
  9. 9.
    Wang J W, Kalinichev A G, Kirkpatrick R J. Molecular modeling of water structure in nano-pores between brucite (001) surfaces. Geochimica et Cosmochimica Acta, 2004, 68(16): 3351–3365CrossRefGoogle Scholar
  10. 10.
    Michot L J, Villiéras F, François M, Bihannic I, Pelletier M, Cases J M. Water organisation at solid-aqueous solution interface. Geoscience, 2002, 334(9): 611–631Google Scholar
  11. 11.
    Fenter P, Cheng L, Park C, Zhang Z, Sturchio N C. Structure of the orthoclase (001)-and (010)-water interfaces by high-resolution X-ray reflectivity. Geochim Cosmochim Acta, 2003, 67(22): 4267–4275CrossRefGoogle Scholar
  12. 12.
    Park S H, Sposito G. Structure of water adsorbed on a mica surface. Phys Rev Lett, 2002, 89(8): 085501Google Scholar
  13. 13.
    Moreno E C, Kresak M, Hay D I. Adsorption of molecules of biological interest onto hydroxyapatite. Calcif Tissue Int, 1984, 36(1): 48–59CrossRefGoogle Scholar
  14. 14.
    Nikolenko N V, Esajenko E E. Surface properties of synthetic calcium hydroxyapatite. Adsorpt Sci Technol, 2005, 23(7): 543–553CrossRefGoogle Scholar
  15. 15.
    Kay M I, Young R A, Posner A S. Crystal structure of hydroxyapatite. Nature, 1964, 204(4963): 1050–1052CrossRefGoogle Scholar
  16. 16.
    Wilson R M, Elliott J C, Dowker S E P. Rietveld refinement of the crystallographic structure of human dental enamel apatites. Am Mineral, 1999, 84(9): 1406–1414Google Scholar
  17. 17.
    Hochrein O, Kniep R, Zahn D. Atomistic simulation study of the order-disorder (monoclinic to hexagonal) phase transition of hydroxyapatite. Chem Mater, 2005, 17(8): 1978–1981CrossRefGoogle Scholar
  18. 18.
    Hermans J, Berendsen H J C, van Gunsteren W F, Postma J P M. A consistent empirical potential for water-protein interactions. Biopolymers, 1984, 23: 1513–1518CrossRefGoogle Scholar
  19. 19.
    Berendsen H J C, van der Spoel D, van Drunen R. GROMACS: A message-passing parallel molecular dynamics implementation. Comp Phys Comm, 1995, 91(1–3): 43–56CrossRefGoogle Scholar
  20. 20.
    Lindahl E, Hess B, van der Spoel D. Gromacs 3.0: A package for molecular simulation and trajectory analysis. J Mol Mod, 2001, 7(8): 306–317Google Scholar
  21. 21.
    Darden T, York D, Pedersen L. Particle mesh Ewald: An N-log(N) method for Ewald sums in large systems. J Chem Phys, 1993, 98(12): 10089–10092CrossRefGoogle Scholar
  22. 22.
    Essmann U, Perera L, Berkowitz M L, Darden T, Lee H, Pedersen L G. A smooth particle mesh ewald potential. J Chem Phys, 1995, 103(19): 8577–8592CrossRefGoogle Scholar
  23. 23.
    Berendsen H J C, Postma J P M, DiNola A, Haak J R. Molecular dynamics with coupling to an external bath. J Chem Phys, 1984, 81(8): 3684–3690CrossRefGoogle Scholar
  24. 24.
    Tang R, Wang L, Orme C A, Bonstein T, Bush P J, Nancollas G H. Dissolution at the nanoscale: self-preservation of biominerals. Angew Chem Int Ed, 2004, 43(20): 2697–2701; Angew Chem, 2004, 116(20): 2751–2755CrossRefGoogle Scholar
  25. 25.
    Morishige K, Kawano K. Freezing and melting of water in a single cylindrical pore: The pore-size dependence of freezing and melting behavior. J Chem Phys, 1998, 110(10): 4867–4872CrossRefGoogle Scholar
  26. 26.
    Myneni S, Luo Y, Näslund L A, Ojamae L, Ogasawara H, Pelmenschikov A, Wernet P, Väterlein P, Heske C, Hussein Z, Pettersson L G M, Nilsson A. Spectroscopic probing of local hydrogenbonding structures in liquid water. J Phys: Condens Matter, 2002, 14(8): L213–L219CrossRefGoogle Scholar
  27. 27.
    Zhu Y, Granick S. Viscosity of interfacial water. Phys Rev Lett, 2001, 87(9): 096104Google Scholar
  28. 28.
    Sakuma H, Tsuchiya T, Kawamura K, Otsuki K. Large self-diffusion of water on brucite surface by ab initio potential energy surface and molecular dynamics simulations. Surf Sci, 2003, 536(1–3): L396–L402CrossRefGoogle Scholar
  29. 29.
    Teschke O, Ceotto G, de Souza E F. Interfacial water dielectric-permittivity-profile measurements using atomic force microscopy. Phys Rev E, 2001, 64(1): 011605Google Scholar
  30. 30.
    Wilson E E, Awonusi A, Morris M D, Kohn D H, Tecklenburg M M, Beck L W. Highly ordered interstitial water observed in bone by nuclear magnetic resonance. J Bone Miner Res, 2005, 20(4): 625–634CrossRefGoogle Scholar
  31. 31.
    Guillot B. A reappraisal of what we have learnt during three decades of computer simulations on water. J Mol Liq, 2002, 101(1–3): 219–260CrossRefGoogle Scholar
  32. 32.
    Onuma K, Ito A, Tateishi T, Kameyama T. Growth kinetics of hydroxyapatite crystal revealed by atomic force microscopy. J Crys Growth, 1995, 154(1–2): 118–125CrossRefGoogle Scholar

Copyright information

© Higher Education Press and Springer-Verlag 2007

Authors and Affiliations

  • Pan Haihua 
    • 1
    • 2
  • Tao Jinhui 
    • 1
  • Wu Tao 
    • 1
    • 2
  • Tang Ruikang 
    • 1
    • 2
  1. 1.Department of ChemistryZhejiang UniversityHangzhouChina
  2. 2.Center for Biomaterials and BiopathwaysZhejiang UniversityHangzhouChina

Personalised recommendations