Skip to main content
Log in

Characterization of iodine species in the marine aerosol: To understand their roles in particle formation processes

  • Research Article
  • Published:
Frontiers of Chemistry in China

Abstract

In this contribution, iodine chemistry in the Marine Boundary Layer (MBL) is introduced. A series of methodologies for the measurements of iodine species in the gas and particle phases of the coastal atmosphere has been developed. Iodine species in the gas phase in real air samples has been determined in two field campaigns at the west coast of Ireland, indicating that gaseous iodo-hydrocarbons and elemental iodine are the precursors of new particle formation. Particulate iodine speciation from the same measurement campaigns show that the non-water-soluble iodine compounds are the main iodine species during the marine particle formation. A seaweed-chamber experiment was performed, indicating that gaseous I2 is one of the important precursors that lead to new particle formation in the presence of solar light in the ambient air at the coastal tidal area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O’Dowd C. D., Hämeri K., Mäkelä J., Väkeva M. and Aalto P., Coastal new particle formation: environmental conditions and aerosol physicochemical characteristics during nucleation bursts, J. Geophys. Res. 2002, 107: 8107

    Article  Google Scholar 

  2. O’Dowd C. D. et al., Atmospheric science: marine aerosols and iodine emissions (Reply), Nature, 2005, 433: E13–E14

    Article  CAS  Google Scholar 

  3. Kolb C. E., Iodine’s air of importance, Nature, 2002, 417: 597–598

    Article  CAS  Google Scholar 

  4. Slingo A., Sensitivity of the Earth’s radiation budget to changes in the low clouds, Nature, 1990, 343: 49–51

    Article  Google Scholar 

  5. Tsunogai S., Iodine in the deep water of the ocean, Deep-Sea Res., 1971, 18: 913–919

    CAS  Google Scholar 

  6. Ullman W. J., G.W.L., G.J. d. L. and J.R. W. W., Iodine chemistry in deep anoxic basins and overlying waters of the Mediterranean Sea, Mar. Chem., 1990, 31: 153–170

    CAS  Google Scholar 

  7. Waite T. J. and Truesdale V. W., Iodate reduction by Ioschrysis galbana is relatively insensitive to de-activation of nitrate reductase activity—are phytoplankton really responsible for iodate reduction in seawater?, Mar. Chem., 2003, 81: 137–148

    Article  CAS  Google Scholar 

  8. Schwehr K. A. and Santschi P. H., A Sensitive Determination of Iodide Species in Fresh or Saline Matrixes Using High Performance Chromatography and UV/Visible Detection. http://loer.tamug.tamu.edu Poster, 2002

  9. Miyake Y. and Tsunogai S., Evaporation of iodine from the ocean, J. Geophys. Res., 1963, 68: 3989–3993

    CAS  Google Scholar 

  10. Garland J. A. and Curtis H., Emission of iodine from the sea surface in the presence of ozone, J. Geophys. Res., 1981, 86: 3183–3196

    Google Scholar 

  11. Thompson A. M. and Zafiriou O. C., Air-sea fluxes of transient atmospheric species, J. Geophys. Res., 1983, 88: 6696–6708

    CAS  Google Scholar 

  12. Lovelock J. E., Natural halocarbons in the air and in the sea, Nature, 1975, 256: 193–194

    Article  CAS  Google Scholar 

  13. Vogt R., Sander R., Glasow R. v. and Crutzen P. J., Iodine chemistry and its role in halogen activation and ozone loss in the marine boundary layer: a model study, J. Atmos. Chem., 1999, 32: 375–395

    Article  CAS  Google Scholar 

  14. Singh H. B., Salas L. J. and Stiles R. E., Methyl halides in and over the eastern Pacific (40 N-32 S), J. Geophys. Res., 1983, 88: 3684–3690

    Article  CAS  Google Scholar 

  15. Carpenter L. J. and Lewis A. C., Ocean-atmosphere exchange of reactive halocarbons and hydrocarbons, Recent Res. Dev. Geophys., 2002, 4: 45–56

    CAS  Google Scholar 

  16. Vogt R., Iodine compounds in the atmosphere. In: The Handbook of Environmental Chemistry, Vol. 4 Part E, Berlin Heidelberg: Springer-Verlag, 1999, 144–128

    Google Scholar 

  17. Saiz-Lopez A. and Plane J. M. C., Novel iodine chemistry in the marine boundary layer, Geophys. Res. Lett., 2004, 31: L04112

    Google Scholar 

  18. Gaebler H. E. and Heumann K. G., Determination of atmospheric iodine species using a system of specificly prepared filters and IDMS, Fresenius’ J. Anal. Chem., 1993, 345: 53–59

    Article  CAS  Google Scholar 

  19. Alicke B., Hebestreit K., Stutz J. and Platt U., Iodine oxide in the marine boundary layer, Nature 1999, 397: 572–573

    Article  CAS  Google Scholar 

  20. Allan B. J., Planc J. M. and Mcfiggans G., Observations of OIO in the remote marine boundary layer, Geophys. Res. Lett., 2001, 28: 1945–1948

    Article  CAS  Google Scholar 

  21. Hoffmann T., O’Dowd C. D. and Seinfeld J. H., Iodine oxide homogeneous nucleation: an explanation for coastal new particle production, Geophys. Res. Lett., 2001, 28: 1949–1952

    Article  CAS  Google Scholar 

  22. O’Dowd C. D. et al., On the photochemical production of new particles in the coastal boundary layer, Geophys. Res. Lett., 1999, 26: 1707–1710

    Article  CAS  Google Scholar 

  23. O’Dowd C. D. et al., Marine aerosol formation from biogenic iodine emissions, Nature, 2002, 417: 632–634

    Article  CAS  Google Scholar 

  24. Adams J. W. and Cox R. A., Halogen chemistry of the marine boundary layer, J. Phys., IV, 2002, 12: 105–124

    Google Scholar 

  25. Carpenter L. J., Iodine in the marine boundary layer, Chem. Rev., 2003, 103: 4953–4962

    Article  CAS  Google Scholar 

  26. Saiz-Lopez A., Saunders R. W., Joseph D. M., Ashworth S. H. and Plane J. M. C., Absolute absorption cross-section and photolysis rate of I2 Atmos. Chem. Phys., 2004, 4: 1443–1450

    CAS  Google Scholar 

  27. Cotter E. S. N., Booth N. J., Canosa-Mas C. E. and Wayne R. P., Release of iodine in the atmospheric oxidation of alkyl iodides and the fates of iodinated alkoxy radicals. Atmos. Environ., 2001, 35: 2169–2178

    Article  CAS  Google Scholar 

  28. Carpenter L. J. et al., Short-lived alkyl iodides and bromides at Mace Head, Ireland: links to biogenic sources and halogen oxide production, J. Geophys. Res. (Atmospheres), 1999, 104: 1679–1689

    Article  CAS  Google Scholar 

  29. Jenkin M. E., The photochemistry of iodine-containing compounds in the marine boundary layer, Environ. and Energy Rep. AEA EE-0405, Oxfordshire, England: AEA Harwell Lab., 1992

    Google Scholar 

  30. Stutz J., Hebestreit K., Alicke B. and Platt U., Comparison of model calculations with recent field data, J. Atmos. Chem., 1999, 34: 65–85

    Article  CAS  Google Scholar 

  31. Davis D. et al., Potential impact of iodine on tropospheric levels of ozone and other critical oxidants, J. Geophys. Res. (Atmospheres), 1996, 101: 2135–2147

    Article  CAS  Google Scholar 

  32. Cox R. A., Bloss W. J., Jones R. L. and Rowley D. M., OIO and 1857–1860

  33. Rowley D. M., Bloss W. J., Cox R. A. and Jones R. L., Kinetics and products of the IO + BrO reaction, J. Phys. Chem. A, 2001, 105: 7855–7864

    Article  CAS  Google Scholar 

  34. Bloss W. J., Rowley D. M., Cox R. A. and Jones R. L., Kinetics and products of the IO self-reaction, J. Phys. Chem. A, 2001, 105: 7840–7854

    Article  CAS  Google Scholar 

  35. Misra A. and Marshall P., Computational investigations of iodine oxides, J. Phys. Chem. A, 1998, 102: 9056–6060

    Article  CAS  Google Scholar 

  36. Baker A. R., Thompson D., Campos M. L. A. M., Parry S. J. and Jickells T. D., Iodine concentration and availability in atmospheric aerosol, Atmos. Environ., 2000, 34: 4331–4336

    Article  CAS  Google Scholar 

  37. Holmes N. S., Adams J. W. and Crowley J. N., Uptake and reaction of HOI and on frozen and dry IONO2 NaCl/NaBr surfaces and H2SO4, Phys. Chem. Chem. Phys., 2001, 3: 1679–1687

    Article  CAS  Google Scholar 

  38. Mäkelä J. M. et al., Biogenic iodine emissions and identification of end-products in coastal ultrafine particles during nucleation bursts. J. Geophys. Res., 2002, 107: 8110

    Article  CAS  Google Scholar 

  39. Ashworth S. H., Allan B. J. and Plane J. M. C., High resolution spectroscopy of the OIO radical: implications for the ozone-depleting potential of iodine in the marine boundary layer, Geophys. Res. Lett., 2002, 29: 1456

    Article  CAS  Google Scholar 

  40. McFiggans G., Cox R. A., Mossinger J. C., Allan B. J. and Plane J. M. C., Active chlorine release from marine aerosols: roles for reactive iodine and nitrogen species, J. Geophys. Res. (Atmospheres), 2002, 107

  41. McFiggans G. et al., A modeling study of iodine chemistry in the marine boundary layer, J. Geophys. Res. (Atmospheres), 2000, 105: 14371–14385

    Article  CAS  Google Scholar 

  42. Carpenter L. J., Hebestreit K., Platt U. and Liss P. S., Coastal zone production of IO precursors: a 2-dimensional study, Atmos. Chem. Phys. 2001, 1: 9–18

    CAS  Google Scholar 

  43. Burkholder J. B., Curtius1 J., Ravishankara A. R. and Lovejoy E. R., Laboratory studies of the homogeneous nucleation of iodine oxides, Atmos. Chem. Phys. Discuss., 2003, 3: 4943–4988

    Google Scholar 

  44. McFiggans G. et al., Direct evidence for coastal iodine particles from Laminaria macroalage — linkage to emissions of molecular iodine, Atmos. Chem. Phys. Discuss., 2004, 4: 939–967

    Article  Google Scholar 

  45. Hofmann K. A., Lehrbuch für Anorganische Chemie, 1924

  46. Rosenfeld L., Discovery and early uses of iodine, J. Chem. Educ., 2000, 77: 984–987

    Article  CAS  Google Scholar 

  47. Mader B. T., Flagan R. C. and Seinfeld J. H., Sampling atmospheric carbonaceous aerosols using a particle trap impactor/denuder sampler, Environ. Sci. Technol., 2001, 35: 4857–4867

    Article  CAS  Google Scholar 

  48. Simon P. K. and Dasgupta P. K., Continuous automated measurment of gaseous nitrous and nitric acids and particlate nitrite and nitrate, Environ. Sci. Technol., 1995, 29: 1534–1541

    Article  CAS  Google Scholar 

  49. Taira M. and Kanda Y., Wet effluent diffusion denuder for sampling of atmospheric gaseous nitric acid, Anal. Chem., 1993, 65: 3171–3173

    Article  CAS  Google Scholar 

  50. Hon P. K., Mak T. C. W. and James T., Synthesis and structure of l-methyl-1,3,5,7-tetraazaadamantan-1-ium octaiodide, [(CH2)6N4CH3]2I8. A new outstretched 2 configuration for the polyiodide ion 182-. Inorg. Chem., 1979, 18: 2916–2918

    Article  CAS  Google Scholar 

  51. Knapp G., Maichin B., Fecher P., Hasse S. and Schramel P., Iodine determination in biological materials options for sample preparation and final determination, Fresenius’ J. Anal. Chem. 1998, 362: 508–513

    Article  CAS  Google Scholar 

  52. Hou X. et al., Determination of chemical species of iodine in seawater by radiochemical neutron activation analysis combined with ion-exchange preseparation, Anal. Chem., 1999, 71: 2745–2750.

    Article  CAS  Google Scholar 

  53. Yoon Y. J. et al., Biogenic aerosol and gas flux study in and around Mace Head. In. Kasahara M and Kulmala M (eds.), Proc. E 16th International Conf. Nucleation and Atmospheric Aerosols (ICNAA)/Kyoto, Japan, Kyoto University Press, 2004, 674–677

    Google Scholar 

  54. Baker A. R., Tunnicliffe C. and Jickells T. D., Iodine speciation and deposition fluxes from the marine atmosphere, J. Geophys. Res., 2001, 106: 28743–28749

    Article  CAS  Google Scholar 

  55. Baker A. R., Inorganic iodine speciation in tropical Atlantic aerosol, Geophys. Res. Lett., 2004, 31: L23S02

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongwei Chen.

About this article

Cite this article

Chen, H., Brandt, R., Bandur, R. et al. Characterization of iodine species in the marine aerosol: To understand their roles in particle formation processes. Front. Chem. China 1, 119–129 (2006). https://doi.org/10.1007/s11458-006-0001-5

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11458-006-0001-5

Keywords

Navigation