Skip to main content
Log in

Vegetation-related dry deposition of global PM2.5 from satellite observations

  • Research Articles
  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

Vegetation plays an important role in the dry deposition of particles with significant spatial variability, but the magnitude remains unclear at the global scale. With the aid of satellite products, this study estimated the vegetation-related dry deposition of fine particulate matter (PM2.5). Methodologically, dry deposition was first calculated using an empirical algorithm. Then, deposition on the leaf surface was estimated to evaluate the influence of vegetation. Our results showed that the mean deposition velocity (Vd) of global PM2.5 was 0.91×10−3 µg·m−2·s−1, with high velocities observed in sparsely vegetated regions because of the high friction velocity. Under the combined effect of the PM2.5 mass concentration and deposition velocity, the global mean dry deposition reached 0.47 g·m−2·yr−1. Global vegetation absorbed 0.26 g·m−2·yr−1 from PM2.5 pollution sources, contributing 54.98% of the total dry deposition. Spatially, vegetation-related dry deposition was high in the Amazon, Central Africa and East China due to dense vegetation coverage or serious pollution. Temporally, the increasing trends were mainly in Central Africa and India because of worsening air pollution. The results of this study helped to clarify the impact of vegetation on air pollution, which supported related land management and planning for air quality improvement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aragão L E O C, Anderson L O, Fonseca M G et al., 2018. 21st century drought-related fires counteract the decline of Amazon deforestation carbon emissions. Nature Communications, 9: 536.

    Article  Google Scholar 

  • Bagley J E, Desai A R, Harding K J et al., 2014. Drought and deforestation: Has land cover change influenced recent precipitation extremes in the Amazon? Journal of Climate, 27(1): 345–361.

    Article  Google Scholar 

  • Campos-Taberner M, Javier Garcia-Haro F, Moreno A et al., 2015. Mapping leaf area index with a smartphone and Gaussian processes. IEEE Geoscience and Remote Sensing Letters, 12(12): 2501–2505.

    Article  Google Scholar 

  • Chen C, Park T, Wang X et al., 2019. China and India lead in greening of the world through land-use management. Nature Sustainability, 2(2): 122–129.

    Article  Google Scholar 

  • Cheng M, Jiang H, Guo Z et al., 2013. Estimating NO2 dry deposition using satellite data in eastern China. International Journal of Remote Sensing, 34(7): 2548–2565.

    Article  Google Scholar 

  • Cohen J B, Lecoeur E, Ng D H L, 2017. Decadal-scale relationship between measurements of aerosols, land-use change, and fire over Southeast Asia. Atmospheric Chemistry and Physics, 17(1): 721–743.

    Article  Google Scholar 

  • De Jong R, De Bruin S, De Wit A et al., 2011. Analysis of monotonic greening and browning trends from global NDVI time-series. Remote Sensing of Environment, 115(2): 692–702.

    Article  Google Scholar 

  • Du J, Zhang X, Huang T et al., 2019. Removal of PM2.5 and secondary inorganic aerosols in the North China Plain by dry deposition. Science of the Total Environment, 651(2): 2312–2322.

    Article  Google Scholar 

  • Dzierzanowski K, Popek R, Gawronska H et al., 2011. Deposition of particulate matter of different size fractions on leaf surfaces and in waxes of urban forest species. International Journal of Phytoremediation, 13(10): 1037–1046.

    Article  Google Scholar 

  • Fang X, Zou B, Liu X et al., 2016. Satellite-based ground PM2.5 estimation using timely structure adaptive modeling. Remote Sensing of Environment, 186: 152–163.

    Article  Google Scholar 

  • Feldman M S, Howard T, Mcdonald-Buller E et al., 2007. Applications of satellite remote sensing data for estimating dry deposition in eastern Texas. Atmospheric Environment, 41(35): 7562–7576.

    Article  Google Scholar 

  • Feng H, Liu Y, 2014. Trajectory based detection of forest-change impacts on surface soil moisture at a basin scale [Poyang Lake Basin, China]. Journal of Hydrology, 514(June): 337–346.

    Article  Google Scholar 

  • Feng H, Liu Y, 2015. Combined effects of precipitation and air temperature on soil moisture in different land covers in a humid basin. Journal of Hydrology, 531(December): 1129–1140.

    Article  Google Scholar 

  • Feng H, Zou B, 2019a. A greening world enhances the surface-air temperature difference. Science of the Total Environment, 658: 385–394.

    Article  Google Scholar 

  • Feng H, Zou B, 2019b. Satellite-based estimation of the aerosol forcing contribution to the global land surface temperature in the recent decade. Remote Sensing of Environment, 232: 111299.

    Article  Google Scholar 

  • Feng H, Zou B, 2020. Satellite-based separation of climatic and surface influences on global aerosol change. International Journal of Remote Sensing, 41(14): 5443–5456.

    Article  Google Scholar 

  • Feng H, Zou B, Tang Y, 2017. Scale- and region-dependence in landscape-PM2.5 correlation: Implications for urban planning. Remote Sensing, 9(9): 918.

    Article  Google Scholar 

  • Feng H, Zou B, Wang J et al., 2019. Dominant variables of global air pollution-climate interaction: Geographic insight. Ecological Indicators, 99(April): 251–260.

    Article  Google Scholar 

  • Fenger J, 2009. Air pollution in the last 50 years: From local to global. Atmospheric Environment, 43(1): 13–22.

    Article  Google Scholar 

  • Findell K L, Berg A, Gentine P et al., 2017. The impact of anthropogenic land use and land cover change on regional climate extremes. Nature Communications, 8: 989.

    Article  Google Scholar 

  • Friedl M A, Mciver D K, Hodges J C F et al., 2002. Global land cover mapping from MODIS: Algorithms and early results. Remote Sensing of Environment, 83(1/2): 287–302.

    Article  Google Scholar 

  • Friedl M A, Sulla-Menashe D, Tan B et al., 2010. MODIS Collection 5 global land cover: Algorithm refinements and characterization of new datasets. Remote Sensing of Environment, 114(1): 168–182.

    Article  Google Scholar 

  • Fu B, Wang S, Zhang J et al., 2019. Unravelling the complexity in achieving the 17 sustainable-development goals. National Science Review, 6(3): 386–388.

    Article  Google Scholar 

  • Fu Y, Xu W, Wen Z et al., 2020. Enhanced atmospheric nitrogen deposition at a rural site in northwest China from 2011 to 2018. Atmospheric Research, 245(November): 105071.

    Article  Google Scholar 

  • Gallagher M W, Nemitz E, Dorsey J R et al., 2002. Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: Influence of surface roughness length on deposition. Journal of Geophysical Research: Atmospheres, 107(D12): 4154.

    Article  Google Scholar 

  • García De Jalon S, Burgess P J, Curiel Yuste J et al., 2019. Dry deposition of air pollutants on trees at regional scale: A case study in the Basque Country. Agricultural and Forest Meteorology, 278(November): 107648.

    Article  Google Scholar 

  • Gong C, Lei Y, Ma Y et al., 2020. Ozone-vegetation feedback through dry deposition and isoprene emissions in a global chemistry-carbon-climate model. Atmospheric Chemistry and Physics, 20(6): 3841–3857.

    Article  Google Scholar 

  • Hammer M S, Van Donkelaar A, Li C et al., 2020. Global estimates and long-term trends of fine particulate matter concentrations (1998–2018). Environmental Science & Technology, 54(13): 7879–7890.

    Article  Google Scholar 

  • Harrison R M, Deaco A R, Jones M R, 1997. Sources and processes affecting concentrations of PM10 and PM2.5 particulate matter in Birmingham (U.K.). Atmospheric Environment, 31(24): 4103–4117.

    Article  Google Scholar 

  • Heald C L, Spracklen D V, 2015. Land use change impacts on air quality and climate. Chemical Reviews, 115(10): 4476–4496.

    Article  Google Scholar 

  • Hicks B B, Baldocchi D D, Hosker R P et al., 1985. On the use of monitored air concentrations to infer dry deposition. NOAA Technical Memorandum ERL ARL-1411985, MD: Silver Springs.

    Google Scholar 

  • Howells M, Hermann S, Welsch M et al., 2013. Integrated analysis of climate change, land-use, energy and water strategies. Nature Climate Change, 3(7): 621–626.

    Article  Google Scholar 

  • Huang Y, Shen H, Chen H et al., 2014. Quantification of global primary emissions of PM2.5, PM10, and TSP from combustion and industrial process sources. Environmental Science & Technology, 48(23): 13834–13843.

    Article  Google Scholar 

  • Huber S, Fensholt R, Rasmussen K, 2011. Water availability as the driver of vegetation dynamics in the African Sahel from 1982 to 2007. Global and Planetary Change, 76(3/4): 186–195.

    Article  Google Scholar 

  • Janhäll S, 2015. Review on urban vegetation and particle air pollution: Deposition and dispersion. Atmospheric Environment, 105(March): 130–137.

    Article  Google Scholar 

  • Liu L, Zhang X, Xu W et al., 2020. Global estimates of dry ammonia deposition inferred from space-measurements. Science of the Total Environment, 730(August): 139189.

    Article  Google Scholar 

  • Lu X, Jiang H, Zhang X et al., 2013. Estimated global nitrogen deposition using NO2 column density. International Journal of Remote Sensing, 34(24): 8893–8906.

    Article  Google Scholar 

  • Matsuda K, Fujimura Y, Hayashi K et al., 2010. Deposition velocity of PM2.5 sulfate in the summer above a deciduous forest in central Japan. Atmospheric Environment, 44(36): 4582–4587.

    Article  Google Scholar 

  • Mcdonald A G, Bealey W J, Fowler D et al., 2007. Quantifying the effect of urban tree planting on concentrations and depositions of PM10 in two UK conurbations. Atmospheric Environment, 41(38): 8455–8467.

    Article  Google Scholar 

  • Mehta M, Singh R, Singh A et al., 2016. Recent global aerosol optical depth variations and trends: A comparative study using MODIS and MISR level 3 datasets. Remote Sensing of Environment, 181: 137–150.

    Article  Google Scholar 

  • Mishchenko M I, Geogdzhayev I V, Rossow W B et al., 2007. Long-term satellite record reveals likely recent aerosol trend. Science, 315(5818): 1543–1543.

    Article  Google Scholar 

  • Monticelli D D F, Santos J M, Dourado H O et al., 2020. Assessing particle dry deposition in an urban environment by using dispersion models. Atmospheric Pollution Research, 11(1): 1–10.

    Article  Google Scholar 

  • Negrón-Juárez R I, Koven C D, Riley W J et al., 2015. Observed allocations of productivity and biomass, and turnover times in tropical forests are not accurately represented in CMIP5 Earth system models. Environmental Research Letters, 10(6): 064017.

    Article  Google Scholar 

  • Nowak D J, Crane D E, Stevens J C, 2006. Air pollution removal by urban trees and shrubs in the United States. Urban Forestry & Urban Greening, 4(3/4): 115–123.

    Article  Google Scholar 

  • Olauson J, 2018. ERA5: The new champion of wind power modelling? Renewable Energy, 126(October): 322–331.

    Article  Google Scholar 

  • Pausata F S R, Messori G, Zhang Q, 2016. Impacts of dust reduction on the northward expansion of the African monsoon during the Green Sahara period. Earth and Planetary Science Letters, 434(January): 298–307.

    Article  Google Scholar 

  • Pederson J, Massman W, Mahrt L et al., 1995. California ozone deposition experiment: Methods, results, and opportunities. Atmospheric Environment, 29(21): 3115–3132.

    Article  Google Scholar 

  • Petroff A, Mailliat A, Amielh M et al., 2008. Aerosol dry deposition on vegetative canopies. Part I: Review of present knowledge. Atmospheric Environment, 42(16): 3625–3653.

    Article  Google Scholar 

  • PielkeSr R A, Pitman A, Niyogi D et al., 2011. Land use/land cover changes and climate: modeling analysis and observational evidence. Wiley Interdisciplinary Reviews: Climate Change, 2(6): 828–850.

    Google Scholar 

  • Ramon J, Lledó L, Torralba V et al., 2019. What global reanalysis best represents near-surface winds? Quarterly Journal of the Royal Meteorological Society, 145(724): 3236–3251.

    Article  Google Scholar 

  • Saylor R D, Baker B D, Lee P et al., 2019. The particle dry deposition component of total deposition from air quality models: right, wrong or uncertain? Tellus B: Chemical and Physical Meteorology, 71(1): 1550324.

    Article  Google Scholar 

  • Shen J, Li Y, Liu X et al., 2013. Atmospheric dry and wet nitrogen deposition on three contrasting land use types of an agricultural catchment in subtropical central China. Atmospheric Environment, 67(March): 415–424.

    Article  Google Scholar 

  • Smith W H. Air pollution and forests: interactions between air contaminants and forest ecosystems. Springer Science & Business Media, 2012.

  • Song X-P, Hansen M C, Stehman S V et al., 2018. Global land change from 1982 to 2016. Nature, 560(7720): 639.

    Article  Google Scholar 

  • Sterling S M, Ducharne A, Polcher J, 2013. The impact of global land-cover change on the terrestrial water cycle. Nature Climate Change, 3(4): 385–390.

    Article  Google Scholar 

  • Stow D, Petersen A, Hope A et al., 2007. Greenness trends of Arctic tundra vegetation in the 1990s: Comparison of two NDVI data sets from NOAA AVHRR systems. International Journal of Remote Sensing, 28(21): 4807–4822.

    Article  Google Scholar 

  • Sulla-Menashe D, Gray J M, Abercrombie S P et al., 2019. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sensing of Environment, 222: 183–194.

    Article  Google Scholar 

  • Sun Y, Jiang Q, Wang Z et al., 2014. Investigation of the sources and evolution processes of severe haze pollution in Beijing in January 2013. Journal of Geophysical Research: Atmospheres, 119(7): 4380–4398.

    Article  Google Scholar 

  • Vecchi R, Marcazzan G, Valli G et al., 2004. The role of atmospheric dispersion in the seasonal variation of PM1 and PM2.5 concentration and composition in the urban area of Milan (Italy). Atmospheric Environment, 38(27): 4437–4446.

    Article  Google Scholar 

  • Verburg P H, Crossman N, Ellis E C et al., 2015. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene, 12(December): 29–41.

    Article  Google Scholar 

  • Verburg P H, Veldkamp A, 2005. Introduction to the special issue on spatial modeling to explore land use dynamics. International Journal of Geographical Information Science, 19(2): 99–102.

    Article  Google Scholar 

  • Wang Y, Liu C, Wang Q et al., 2021. Impacts of natural and socioeconomic factors on PM2.5 from 2014 to 2017. Journal of Environmental Management, 284(April): 112071.

    Article  Google Scholar 

  • Weber R J, Guo H, Russell A G et al., 2016. High aerosol acidity despite declining atmospheric sulfate concentrations over the past 15 years. Nature Geoscience, 9(4): 282.

    Article  Google Scholar 

  • Wesely M L, 1989. Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models. Atmospheric Environment (1967), 23(6): 1293–1304.

    Article  Google Scholar 

  • Wesely M L, Hicks B B, 2000. A review of the current status of knowledge on dry deposition. Atmospheric Environment, 34(12–14): 2261–2282.

    Article  Google Scholar 

  • Wong A Y H, Geddes J A, Tai A P K et al., 2019. Importance of dry deposition parameterization choice in global simulations of surface ozone. Atmospheric Chemistry and Physics, 19(22): 14365–14385.

    Article  Google Scholar 

  • Xiao Z, Liang S, Wang J et al., 2016. Long-time-series global land surface satellite leaf area index product derived from MODIS and AVHRR surface reflectance. IEEE Transactions on Geoscience And Remote Sensing, 54(9): 5301–5318.

    Article  Google Scholar 

  • Xing Y, Brimblecombe P, 2019. Role of vegetation in deposition and dispersion of air pollution in urban parks. Atmospheric Environment, 201(March): 73–83.

    Article  Google Scholar 

  • Yan F, Wang P, Kang S et al., 2020. High particulate carbon deposition in Lhasa: A typical city in the Himalayan-Tibetan Plateau due to local contributions. Chemosphere, 247(May): 125843.

    Article  Google Scholar 

  • Yang L, Jia K, Liang S et al., 2016. Comparison of four machine learning methods for generating the GLASS fractional vegetation cover product from MODIS data. Remote Sensing, 8(8): 682.

    Article  Google Scholar 

  • Zhang L, He Z, 2014. Technical note: An empirical algorithm estimating dry deposition velocity of fine, coarse and giant particles. Atmospheric Chemistry and Physics, 14(7): 3729–3737.

    Article  Google Scholar 

  • Zhang Q, Zheng Y, Tong D et al., 2019. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proceedings of The National Academy of Sciences of the United States of America, 116(49): 24463–24469.

    Article  Google Scholar 

  • Zheng Y, Zhao T, Che H et al., 2016. A 20-year simulated climatology of global dust aerosol deposition. Science of the Total Environment, 557(July): 861–868.

    Article  Google Scholar 

  • Zhu Z, Piao S, Myneni R B et al., 2016. Greening of the Earth and its drivers. Nature Climate Change, 6(8): 791.

    Article  Google Scholar 

  • Zivin J G, Neidell M, 2018. Air pollution’s hidden impacts. Science, 359(6371): 39–40.

    Article  Google Scholar 

  • Zou B, You J, Lin Y et al., 2019. Air pollution intervention and life-saving effect in China. Environment International, 125(April): 529–541.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Zou.

Additional information

Foundation: National Natural Science Foundation of China, No.42071378; Natural Science Foundation of Hunan Province, No.2020JJ3045; Foundation of Natural Science of Guangdong, No.2019BT02H594

Author: Feng Huihui (1986–), specialized in remote sensing of resources and environment.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Ding, Y., Zou, B. et al. Vegetation-related dry deposition of global PM2.5 from satellite observations. J. Geogr. Sci. 32, 589–604 (2022). https://doi.org/10.1007/s11442-022-1962-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-022-1962-0

Keywords

Navigation