Breiman L, 2001. Random Forests. Machine Learning, 45(1): 5–32. doi: https://doi.org/10.1023/A:1010933404324.
Google Scholar
Cai D L, You Q L, Fraedrich K et al., 2017. Spatiotemporal temperature variability over the Tibetan Plateau: Altitudinal dependence associated with the global warming hiatus. Journal of Climate, 30(3): 969–984. doi: https://doi.org/10.1175/JCLI-D-16-0343.1.
Google Scholar
Chen H P, Sun J Q, 2017. Contribution of human influence to increased daily precipitation extremes over China. Geophysical Research Letters, 44(5): 2436–2444. doi: https://doi.org/10.1002/2016GL072439.
Google Scholar
Chen W, Peng J B, Hong H Y et al., 2018. Landslide susceptibility modelling using GIS-based machine learning techniques for Chongren County, Jiangxi Province, China. Science of the Total Environment, 626, 1121–1135. doi: https://doi.org/10.1016/j.scitotenv.2018.01.124.
Google Scholar
Chen X X, Wang L C, Niu Z G et al., 2020. The effects of projected climate change and extreme climate on maize and rice in the Yangtze River Basin, China. Agricultural and Forest Meteorology, 282: 107867. doi: https://doi.org/10.1016/j.agrformet.2019.107867.
Google Scholar
Cui L F, Wang L C, Qu S et al., 2019. Spatiotemporal extremes of temperature and precipitation during 1960–2015 in the Yangtze River Basin (China) and impacts on vegetation dynamics. Theoretical and Applied Climatology, 136(1/2): 675–692. doi: https://doi.org/10.1007/s00704-018-2519-0.
Google Scholar
Cutler A, Cutler D R, Stevens J R, 2004. Random forests. Machine Learning, 45(1): 157–176. doi: https://doi.org/10.1007/978-1-4419-9326-7_5.
Google Scholar
Duan W L, Hanasaki N, Shiogama H et al., 2019. Evaluation and future projection of Chinese precipitation extremes using large ensemble high-resolution climate simulations. Journal of Climate, 32(8): 2169–2183. doi: https://doi.org/10.1175/JCLI-D-18-0465.1.
Google Scholar
Duan W L, He B, Nover D et al., 2016. Floods and associated socioeconomic damages in China over the last century. Nature Hazards, 82(1): 401–413. doi: https://doi.org/10.1007/s11069-016-2207-2.
Google Scholar
Duan Z Z, Wang M J, Gao W et al., 2020. Extreme precipitation and the responds of water quality in Lake Dianchi Basin between 1951–2017. Acta Scientiae Circumstantiae, 40(2): 615–622. doi: 0253-2468(2020)40:2. <615:12NDCL>2.0.TX;2-X (in Chinese)
Google Scholar
Gebrechorkos S H, Hulsmann S, Bernhofer C, 2018. Changes in temperature and precipitation extremes in Ethiopia, Kenya, and Tanzania. International Journal of Climatology, 39(1): 18–30. doi: https://doi.org/10.1002/joc.5777.
Google Scholar
Gogoi P P, Vinoj V, Swain D et al., 2019. Land use and land cover change effect on surface temperature over Eastern India. Scientific Reports, 9: 8859. doi: https://doi.org/10.1038/s41598-019-45213-z.
Google Scholar
Hamin E M, Gurran N, 2009. Urban form and climate change: Balancing adaptation and mitigation in the US and Australia. Habitat International, 33(3): 238–245. doi: https://doi.org/10.1016/j.habitatint.2008.10.005.
Google Scholar
Horton D E, Johnson N C, Singh D et al., 2015. Contribution of changes in atmospheric circulation patterns to extreme temperature trends. Nature, 522(7557): 465–469. doi: https://doi.org/10.1038/nature14550.
Google Scholar
Ju Q, Yu Z B, Hao Z C et al., 2014. Response of hydrologic processes to future climate changes in the Yangtze River Basin. Journal of Hydrologic Engineering, 19(1): 211–222. doi: https://doi.org/10.1061/(ASCE)HE.1943-5584.0000770.
Google Scholar
Karl T R, Nicholls N, Ghazi A, 1999. Clivar/GCOS/WMO Workshop on Indices and Indicators for Climate Extremes Workshop Summary. Climatic Change, 42(1): 3–7. doi: https://doi.org/10.1023/A:1005491526870.
Google Scholar
Li B F, Chen Y N, Shi X, 2020. Does elevation dependent warming exist in high mountain Asia? Environmental Research Letters, 15(2): 024012. doi: https://doi.org/10.1088/1748-9326/ab6d7f.
Google Scholar
Li Y C, Li Y, Zhu G R, 2018. A new definition method of climate-sensitive region and its prediction. Acta Geo-graphica Sinica, 73(7): 1283–1295. doi: 0375-5444(2018)73:7 <1283:YZXDQH>2.0.TX;2-C. (in Chinese)
Google Scholar
Li Z X, He Y Q, Theakstone W H et al., 2012. Altitude dependency of trends of daily climate extremes in southwestern China, 1961–2008. Journal of Geographical Sciences, 22(3): 416–430. doi: https://doi.org/10.1007/s11442-012-0936-z.
Google Scholar
Liu C Y, Li Y G, Ji X et al., 2019. Observed changes in temperature and precipitation extremes over the Yarlung Tsangpo River Basin during 1970–2017. Atmosphere, 10(12): 815. doi: https://doi.org/10.3390/atmos10120815.
Google Scholar
Liu J Y, Shao Q Q, Yan X D et al., 2016. The climatic impacts of land use and land cover change compared among countries. Journal of Geographical Sciences, 26(7): 889–903. doi: https://doi.org/10.1007/s11442-016-1305-0.
Google Scholar
Liu X D, Cheng Z G, Yan L B et al., 2009. Elevation dependency of recent and future minimum surface air temperature trends in the Tibetan Plateau and its surroundings. Global and Planetary Change, 68(3): 164–174. doi: https://doi.org/10.1016/j.gloplacha.2009.03.017.
Google Scholar
Ouyang Y, Zhang J E, Feng, G et al., 2020. A century of precipitation trends in forest lands of the Lower Mississippi River Alluvial Valley. Scientific Reports, 10(1): 12802. doi: https://doi.org/10.1038/s41598-020-69508-8.
Google Scholar
Pepin N, Bradley R S, Diaz H F et al., 2015. Elevation-dependent warming in mountain regions of the world. Nature Climate Change, 5(5): 424–430. doi: https://doi.org/10.1038/NCLIMATE2563.
Google Scholar
Stott P A, 2003. Attribution of regional-scale temperature changes to anthropogenic and natural causes. Geophysical Research Letters, 30(14): 1728. doi: https://doi.org/10.1029/2003GL017324.
Google Scholar
Piao S L, Ciais P, Huang Y et al., 2010. The impacts of climate change on water resources and agriculture in China. Nature, 467(7311): 43–51. doi: https://doi.org/10.1038/nature09364.
Google Scholar
Qian W H, Fu J L, Zhang W W et al., 2007. Changes in mean climate and extreme cliamte in China during the last 40 years. Advances in Earth Science, 22(7): 673–684. doi: 1001-8166(2007)22:7 <673:J4NZGP>2.0.TX;2-5. (in Chinese)
Google Scholar
Qu S, Wang L C, Lin A W et al., 2018. What drives the vegetation restoration in Yangtze River basin, China: Climate change or anthropogenic factors? Ecological Indicators, 90: 438–450. doi: https://doi.org/10.1016/j.ecolind.2018.03.029.
Google Scholar
Salerno F, Gaetano V, Gianni T, 2018. Urbanization and climate change impacts on surface water quality: Enhancing the resilience by reducing impervious surfaces. Water Research, 144: 491–502. doi: https://doi.org/10.1016/j.wa-tres.2018.07.058.
Google Scholar
Samuelsson P, Kourzeneva E, Mironov D, 2010. The impact of lakes on the European climate as simulated by a regional climate model. Boreal Environment Research, 15(2), 113–129. doi: https://doi.org/10.1016/j.apcata.2010.02.027.
Google Scholar
Shi J, Cui L L, Wang J B et al., 2018. Changes in the temperature and precipitation extremes in China during 1961–2015. Quaternary International, 527: 64–78. doi: https://doi.org/10.1016/j.quaint.2018.08.008.
Google Scholar
Su B D, Jiang T, Jin W B, 2006. Recent trends in observed temperature and precipitation extremes in the Yangtze River basin, China. Theoretical and Applied Climatology, 83(1–4): 139–151. doi: https://doi.org/10.1007/s00704-005-0139-y.
Google Scholar
Sun J Q, Wang H J, Yuan W, 2009. A possible mechanism for the co-variability of the boreal spring Antarctic Oscillation and the Yangtze River valley summer rainfall. International Journal of Climatology, 29(9): 1276–1284. doi: https://doi.org/10.1002/joc.1773.
Google Scholar
Sun Y, Hu T, Zhang X B et al., 2019. Contribution of global warming and urbanization to changes in temperature extremes in eastern China. Geophysical Research Letters, 46(20): 11426–11434. doi: https://doi.org/10.1029/2019GL084281.
Google Scholar
Svetnik V, Liaw A, Tong C et al., 2003. Random forest: A classification and regression tool for compound classification and QSAR modeling. Journal of Chemical Information and Modeling, 43(6): 1947–1958. doi: https://doi.org/10.1021/ci034160g.
Google Scholar
Tong Y D, Xu X W, Zhang S L et al., 2019. Establishment of season-specific nutrient thresholds and analyses of the effects of nutrient management in eutrophic lakes through statistical machine learning. Journal of Hydrology, 578: 124079. doi: https://doi.org/10.1016/j.jhydrol.2019.124079.
Google Scholar
Torbick N, Chowdhury D, Salas W et al., 2017. Monitoring rice agriculture across Myanmar using time series Sentinel-1 assisted by Landsat-8 and PALSAR-2. Remote Sensing, 9(2): 119. doi: https://doi.org/10.3390/rs9020119.
Google Scholar
Wang M N, Xiong Z, Yan X D, 2015. Modeling the climatic effects of the land use/cover change in eastern China. Physics and Chemistry of the Earth, 87/88: 97–107. doi: https://doi.org/10.1016/j.pce.2015.07.009.
Google Scholar
Wang Q X, Fan X H, Wang M B, 2014. Recent warming amplification over high elevation regions across the globe. Climate Dynamics, 43(1/2): 87–101. doi: https://doi.org/10.1007/s00382-013-1889-3.
Google Scholar
Wang Q, Zhang M J, Wang S J et al., 2013. Extreme temperature events in Yangtze River Basin during 1962–2011. Acta Geographica Sinica, 68(5): 611–625. doi: 0375-5444(2013)68:5 <611:12NCJL>2.0.TX;2-Z. (in Chinese)
Google Scholar
Wang X Q, Guo W D, Qiu B et al., 2017. Quantifying the contribution of land use change to surface temperature in the lower reaches of the Yangtze River. Atmospheric Chemistry and Physics, 17(8): 4989–4996. doi: https://doi.org/10.5194/acp-17-4989-2017.
Google Scholar
Xu Y, Xu C H, Gao X J et al., 2009. Projected changes in temperature and precipitation extremes over the Yangtze River Basin of China in the 21st century. Quaternary International, 208: 44–52. doi: https://doi.org/10.1016/j.quaint.2008.12.020.
Google Scholar
Yang J P, Ding Y J, Chen R S, 2007. Climatic causes of ecological and environmental variations in the source regions of the Yangtze and Yellow Rivers of China. Environmental Geology, 53(1): 113–121. doi: https://doi.org/10.1007/s00254-006-0623-4.
Google Scholar
Yang X C, Leung L R, Zhao N Z et al., 2017. Contribution of urbanization to the increase of extreme heat events in an urban agglomeration in east China. Geophysical Research Letters, 44(13): 6940–6950. doi: https://doi.org/10.1002/2017GL074084.
Google Scholar
Yao X W, Wang Z Q, Wang, H, 2015. Impact of urbanization and land-use change on surface climate in middle and lower reaches of the Yangtze River, 1988–2008. Advances in Meteorology, 395094. doi: https://doi.org/10.1155/2015/395094.
Yin H, Sun Y, 2018. Characteristics of extreme temperature and precipitation in China in 2017 based on ETCCDI indices. Advances in Climate Change Research, 9(4): 218–226. doi: 1673-1719(2019)15:4<363:JYEZS2>2.0.TX;2-G. (in Chinese)
Google Scholar
Zhai P M, Zhou B Q, Chen Y, 2018. A review of climate change attribution studies. Journal of Meteorological Research, 32(5), 671–692. doi: https://doi.org/10.1007/s13351-018-8041-6.
Google Scholar
Zhang P F, Ren G Y, Xu Y et al., 2019. Observed changes in extreme temperature over the global land based on a newly developed station daily dataset. Journal of Climate, 32(24): 8489–8509. doi: https://doi.org/10.1175/JCLI-D-18-0733.1.
Google Scholar
Zhang Z X, Tao H, Zhang Q et al., 2010. Moisture budget variations in the Yangtze River Basin, China, and possible associations with large-scale circulation. Stochastic Environmental Research and Risk Assessment, 24(5): 579–589. doi: https://doi.org/10.1007/s00477-009-0338-7.
Google Scholar
Zhao Y F, Zou X Q, Liu Q et al., 2017. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China. Science of the Total Environment, 607: 920–932. doi: https://doi.org/10.1016/j.scitotenv.2017.07.002.
Google Scholar
Zuo Z Y, Zhang R H, Zhao P, 2011. The relation of vegetation over the Tibetan Plateau to rainfall in China during the boreal summer. Climate Dynamics, 36(5/6): 1207–1219. doi: https://doi.org/10.1007/s00382-010-0863-6.
Google Scholar