Skip to main content
Log in

Method for UAV-based 3D topography reconstruction of tidal creeks

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

It is common to obtain the topography of tidal flats by the Unmanned Aerial Vehicle (UAV) photogrammetry, but this method is not applicable in tidal creeks. The residual water will lead to inaccurate depth inversion results, and the topography of tidal creeks mainly depends on manual survey. The present study took the tidal creek of Chuandong port in Jiangsu Province, China, as the research area and used UAV oblique photogrammetry to reconstruct the topography of the exposed part above the water after the ebb tide. It also proposed a Trend Prediction Fitting (TPF) method for the topography of the unexposed part below the water to obtain a complete 3D topography. The topography above the water measured by UAV has the vertical precision of 12 cm. When the TPF method is used, the cross-section should be perpendicular the central axis of the tidal creek. A polynomial function can be adapted to most shape of sections, while a Fourier function obtains better results in asymmetrical sections. Compared with the two-order function, the three-order function lends itself to more complex sections. Generally, the TPF method is more suitable for small, straight tidal creeks with clear texture and no vegetation cover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akay S S, Ozcan O, Sen O L, 2019. Modeling morphodynamic processes in a meandering river with unmanned aerial vehicle-based measurements. Journal of Applied Remote Sensing, 13(4): 1–18.

    Article  Google Scholar 

  • Allen, J R L, 2000. Morphodynamics of Holocene salt marshes: A review sketch from the Atlantic and Southern North Sea coasts of Europe. Quaternary Science Reviews, 19(12): 1155–1231.

    Article  Google Scholar 

  • Bearman J A, Friedrichs C T, Jaffe B E et al., 2010. Spatial trends in tidal flat shape and associated environmental parameters in South San Francisco Bay. Journal of Coastal Research, 26(2): 342–349.

    Article  Google Scholar 

  • Brunier G, Fleury J, Anthony E J et al., 2016. Close-range airborne Structure-from-Motion photogrammetry for high-resolution beach morphometric surveys: Examples from an embayed rotating beach. Geomorphology, 261: 76–88.

    Article  Google Scholar 

  • Chen L C, 1998. Detection of shoreline changes for tideland areas using multi-temporal satellite images. International Journal of Remote Sensing, 19(17): 3383–3397.

    Article  Google Scholar 

  • Coco G, Zhou Z, van Maanen B et al., 2013. Morphodynamics of tidal networks: Advances and challenges. Marine Geology, 346: 1–16.

    Article  Google Scholar 

  • Dai W, Li H, Gong Z et al., 2019. Application of unmanned aerial vehicle technology in geomorphological evolution of tidal flat. Advances in Water Science, 30(3): 359–372. (in Chinese)

    Google Scholar 

  • D’Alpaos A, Lanzoni S, Marani M et al., 2005. Tidal network ontogeny: Channel initiation and early development. Journal of Geophysical Research, 110: F02001.

    Google Scholar 

  • Dash J, Pearse G, Watt M, 2018. UAV multispectral imagery can complement satellite data for monitoring forest health. Remote Sensing, 10(8): 1216.

    Article  Google Scholar 

  • Davies G, Woodroffe C D, 2010. Tidal estuary width convergence: Theory and form in North Australian estuaries. Earth Surface Processes and Landforms, 35(7): 737–749.

    Google Scholar 

  • Dietrich J T, 2017. Bathymetric Structure-from-Motion: Extracting shallow stream bathymetry from multi-view stereo photogrammetry. Earth Surface Processes and Landforms, 42(2): 355–364.

    Article  Google Scholar 

  • Elgar S, Raubenheimer B, 2011. Currents in a small channel on a sandy tidal flat. Continental Shelf Research, 31(1): 9–14.

    Article  Google Scholar 

  • Fagherazzi S, Mariotti G, 2012. Mudflat runnels: Evidence and importance of very shallow flows in intertidal morphodynamics. Geophysical Research Letters, 39(14): L14402.

    Article  Google Scholar 

  • Fruergaard M, Andersen T J, Nielsen L H et al., 2011. Punctuated sediment record resulting from channel migration in a shallow sand-dominated micro-tidal lagoon, Northern Wadden Sea, Denmark. Marine Geology, 280: 91–104.

    Article  Google Scholar 

  • Gomez C, Hayakawa Y, Obanawa H, 2015. A study of Japanese landscapes using structure from motion derived DSMs and DEMs based on historical aerial photographs: New opportunities for vegetation monitoring and diachronic geomorphology. Geomorphology, 242: 11–20.

    Article  Google Scholar 

  • Gong Z, Wang Z B, Stive M J F et al., 2012. Process-based morphodynamic modeling of a schematized mudflat dominated by a long-shore tidal current at the Central Jiangsu Coast, China. Journal of Coastal Research, 28(6): 1381–1392.

    Article  Google Scholar 

  • Hayakawa Y S, Obanawa H, 2020. Volumetric change detection in bedrock coastal cliffs using terrestrial laser scanning and UAS-based SfM. Sensors, 20(12): 3403.

    Article  Google Scholar 

  • Hibma A, Stive M J F, Wang Z B, 2004. Estuarine morphodynamics. Coastal Engineering, 51: 765–778.

    Article  Google Scholar 

  • Hood W G, 2010. Tidal channel meander formation by depositional rather than erosional processes: Examples from the prograding Skagit River Delta (Washington, USA). Earth Surface Processes and Landforms, 35(3): 319–330.

    Article  Google Scholar 

  • Hughes Z J, 2012. Tidal channels on tidal flats and marshes. In: Richard A Fuller, Robert W Dalrymple eds. Principles of Tidal Sedimentology. Dordrecht, Netherlands: Springer 269–300.

    Chapter  Google Scholar 

  • Ichoku C, Chorowicz J, 1994. A numerical approach to the analysis and classification of channel network patterns. Water Resources Research, 30(2): 161–174.

    Article  Google Scholar 

  • van Iersel W, Straatsma M, Middelkoop H et al., 2018. Multitemporal classification of river floodplain vegetation using time series of UAV images. Remote Sensing, 10(7): 1144.

    Article  Google Scholar 

  • Ishiguro S, Yamano H, Oguma H, 2016. Evaluation of DSMs generated from multi-temporal aerial photographs using emerging structure from motion-multi-view stereo technology. Geomorphology, 268: 64–71.

    Article  Google Scholar 

  • Kasvi E, Salmela J, Lotsari E et al., 2019. Comparison of remote sensing based approaches for mapping bathymetry of shallow, clear water rivers. Geomorphology, 333: 180–197.

    Article  Google Scholar 

  • Lanzoni S, D’Alpaos A, 2015. On funneling of tidal channels. Journal of Geophysical Research: Earth Surface, 120(3): 433–452.

    Article  Google Scholar 

  • Li C X, Z J Q, Fan D et al., 2001. Holocene regression and the tidal radial sand ridge system formation in the Jiangsu coastal zone, East China. Marine Geology, 173: 97–120.

    Article  Google Scholar 

  • Liu Y X, Zhou M X, Zhao S S et al., 2015. Automated extraction of tidal creeks from airborne laser altimetry data. Journal of Hydrology, 527: 1006–1020.

    Article  Google Scholar 

  • Magolan, J L, Halls J N, 2020. A multi-decadal investigation of tidal creek wetland changes, water level rise, and ghost forests. Remote Sensing, 12(7): 1141.

    Article  Google Scholar 

  • Mallin M A, Lewitus A J, 2004. The importance of tidal creek ecosystems. Journal of Experimental Marine Biology and Ecology, 298(2): 145–149.

    Article  Google Scholar 

  • Mancini F, Dubbini M, Gattelli M et al., 2013. Using unmanned aerial vehicles (UAV) for high-resolution reconstruction of topography: The structure from motion approach on coastal environments. Remote Sensing, 5(12): 6880–6898.

    Article  Google Scholar 

  • Mariotti G, Fagherazzi S, 2012. Channels-tidal flat sediment exchange: The channel spillover mechanism. Journal of Geophysical Research: Oceans, 117: C03032.

    Article  Google Scholar 

  • Mason D C, Davenport I J, Flather R A, 1997. Interpolation of an intertidal digital elevation model from heighted shorelines: A case study in the Western Wash. Estuarine, Coastal and Shelf Science, 45(5): 599–612.

    Article  Google Scholar 

  • Mason D C, Davenport I J, Flather R A et al., 1998. A digital elevation model of the inter-tidal areas of the Wash, England, produced by the waterline method. International Journal of Remote Sensing, 19(8): 1455–1460.

    Article  Google Scholar 

  • Mason D C, Scott T R, H-J Wang. 2006. Extraction of tidal channel networks from airborne scanning laser altimetry. ISPRS Journal of Photogrammetry & Remote Sensing, 61: 67–83.

    Article  Google Scholar 

  • Meinen B U, Robinson D T, 2020. Mapping erosion and deposition in an agricultural landscape: Optimization of UAV image acquisition schemes for SfM-MVS. Remote Sensing of Environment, 239: 111666.

    Article  Google Scholar 

  • Mohamad N, Abdul Khanan M F, Ahmad A et al., 2019. Evaluating water level changes at different tidal phases using UAV photogrammetry and GNSS vertical data. Sensors, 19(17): 3778.

    Article  Google Scholar 

  • d’Oleire-Oltmanns S, Marzolff I, Peter K et al., 2012. Unmanned aerial vehicle (UAV) for monitoring soil erosion in Morocco. Remote Sensing, 4(11): 3390–3416.

    Article  Google Scholar 

  • Perillo G M E, 2009. Tidal courses: Classification, origin and functionality. In: Coastal Wetlands: An Integrated Ecosystem Approach. New York: Elsevier Science, 185–209.

    Google Scholar 

  • Rao W B, Mao C P, Wang Y G et al., 2015. Geochemical constraints on the provenance of surface sediments of radial sand ridges off the Jiangsu coastal zone, East China. Marine Geology, 359: 35–49.

    Article  Google Scholar 

  • Shi B W, Cooper J R, Pratolongo P D et al., 2017. Erosion and accretion on a mudflat: The importance of very shallow - water effects. Journal of Geophysical Research: Oceans, 122(12): 9476–9499.

    Article  Google Scholar 

  • Snavely N, Seitz S M, Szeliski R, 2008. Modeling the world from internet photo collections. International Journal of Computer Vision, 80(2): 189–210.

    Article  Google Scholar 

  • Stefanon L, Carniello L, D’Alpaos A et al., 2012. Signatures of sea level changes on tidal geomorphology: Experiments on network incision and retreat. Geophysical Research Letters, 39: L12402.

    Article  Google Scholar 

  • Stevenson J A, Sun X F, Mitchell N C, 2010. Despeckling SRTM and other topographic data with a denoising algorithm. Geomorphology, 114: 238–252.

    Article  Google Scholar 

  • Tong X H, Liu X F, Chen P et al., 2015. Integration of UAV-based photogrammetry and terrestrial laser scanning for the three-dimensional mapping and monitoring of open-pit mine areas. Remote Sensing, 7(6): 6635–6662.

    Article  Google Scholar 

  • Um I, Park S, Kim H T et al., 2020. Configuring RTK-GPS architecture for system redundancy in multi-drone operations. IEEE Access, 8: 76228–76242.

    Article  Google Scholar 

  • Vandenbruwaene W, Meire P, Temmerman S, 2012. Formation and evolution of a tidal channel network within a constructed tidal marsh. Geomorphology, 151/152: 114–125.

    Article  Google Scholar 

  • Vlaswinkel B M, Cantelli A, 2011. Geometric characteristics and evolution of a tidal channel network in experimental setting. Earth Surface Processes and Landforms, 36: 739–752.

    Article  Google Scholar 

  • Wang X Y, Ke X K, 1997. Grain-size characteristics of the extant tidal flat sediments along the Jiangsu coast, China. Sedimentary Geology, 112: 105–122.

    Article  Google Scholar 

  • Wang Y, Zhu D K, You K Y et al., 1999. Evolution of radiative sand ridge field of the South Yellow Sea and its sedimentary characteristics. Science in China Series D Earth Sciences, 42: 97–112.

    Article  Google Scholar 

  • Wang, Y P, Gao S, Jia J J et al., 2012. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Marine Geology, 291–294: 147–161.

    Article  Google Scholar 

  • Watts A C, Ambrosia V G, Hinkley E A, 2012. Unmanned aircraft systems in remote sensing and scientific research: Classification and considerations of use. Remote Sensing, 4(6): 1671–1692.

    Article  Google Scholar 

  • Westoby M J, Alfieri J, Glasser N F et al., 2012. ‘Structure-from-Motion’ photogrammetry: A low-cost, effective tool for geoscience applications. Geomorphology, 179: 300–314.

    Article  Google Scholar 

  • Xing F, Wang Y P, Wang H V, 2012. Tidal hydrodynamics and fine-grained sediment transport on the radial sand ridge system in the southern Yellow Sea. Marine Geology, 291–294: 192–210.

    Article  Google Scholar 

  • Yin Y H, 1997. Actuality and advances in tidal creeks. Marine Geology Letters, 1–4. (in Chinese)

  • Zhang C K, Xu M P, Zhou Z et al., 2018. Advances in cross-shore profile characteristics and sediment sorting dynamics of tidal flats. Advances in Water Science, 29(2): 269–282. (in Chinese)

    Google Scholar 

  • Zhang R S, 1992. Suspended sediment transport processes on tidal mud flat in Jiangsu Province, China. Estuarine, Coastal and Shelf Science, 35(3): 225–233.

    Article  Google Scholar 

  • Zhang S M, Zhao G X, 2019. A harmonious satellite-unmanned aerial vehicle-ground measurement inversion method for monitoring salinity in coastal saline soil. Remote Sensing, 11(14): 1700.

    Article  Google Scholar 

  • Zhao B X, Liu Y X, Xu W X et al., 2019. Morphological characteristics of tidal creeks in the central coastal region of Jiangsu, China, using LiDAR. Remote Sensing, 11(20): 2426.

    Article  Google Scholar 

  • Zhou Z, Stefanon L, Olabarrieta M et al., 2014. Analysis of the drainage density of experimental and modelled tidal networks. Earth Surface Dynamics, 2: 105–116.

    Article  Google Scholar 

Download references

Acknowledgment

The authors would like to thank Kun Zhao, Xiaoyan Zhang, Zhiyuan Li and Huatao Yang for their efforts in collecting the UAV imagery and measuring data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huan Li.

Additional information

Foundation

China National Funds for Distinguished Young Scientists, No.51925905; National Natural Science Foundation of China, No.41401371

Author

Zhang Xuhui (1996–), Master Candidate, specialized in tidal flats and remote sensing, E-mail: zhangxuhui_hhu@163.com

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Li, H., Gong, Z. et al. Method for UAV-based 3D topography reconstruction of tidal creeks. J. Geogr. Sci. 31, 1852–1872 (2021). https://doi.org/10.1007/s11442-021-1926-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-021-1926-9

Keywords

Navigation