Skip to main content
Log in

Estimation and analysis of the ratio of transpiration to evapotranspiration in forest ecosystems along the North-South Transect of East China

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

The ratio of transpiration to evapotranspiration (T/ET) is a key parameter for quantifying water use efficiency of ecosystems and understanding the interaction between ecosystem carbon uptake and water cycling in the context of global change. The estimation of T/ET has been paid increasing attention from the scientific community in recent years globally. In this paper, we used the Priestly-Taylor Jet Propulsion Laboratory Model (PT-JPL) driven by regional remote sensing data and gridded meteorological data, to simulate the T/ET in forest ecosystems along the North-South Transect of East China (NSTEC) during 2001–2010, and to analyze the spatial distribution and temporal variation of T/ET, as well as the factors influencing the variation in T/ET. The results showed that: (1) The PT-JPL model is suitable for the simulation of evapotranspiration and its components of forest ecosystems in Eastern China, and has relatively good stability and reliability. (2) Spatial distribution of T/ET in forest ecosystems along NSTEC was heterogeneous, i.e., T/ET was higher in the north and lower in the south, with an averaged value of 0.69; and the inter-annual variation of T/ET showed a significantly increasing trend, with an increment of 0.007/yr (p<0.01). (3) Seasonal and inter-annual variations of T/ET had different dominant factors. Temperature and EVI can explain around 90% (p<0.01) of the seasonal variation in T/ET, while the inter-annual variation in T/ET was mainly controlled by EVI (53%, p<0.05).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Berkelhammer M, Noone D C, Wong T E et al., 2016. Convergent approaches to determine an ecosystem’s transpiration fraction. Global Biogeochemical Cycles, 30(6): 933–951.

    Article  Google Scholar 

  • Cheng L, Zhang L, Wang Y P et al., 2017. Recent increases in terrestrial carbon uptake at little cost to the water cycle. Nature Communications, 8: 110. doi: https://doi.org/10.1038/s41467-017-00114-5.

    Article  Google Scholar 

  • Coenders-Gerrits A M J, van der Ent R J, Bogaard T A et al., 2014. Uncertainties in transpiration estimates. Nature, 506(7487): E1–E2.

    Article  Google Scholar 

  • Fatichi S, Pappas C, 2017. Constrained variability of modeled T:ET ratio across biomes. Geophysical Research Letters, 44(13): 6795–6803.

    Article  Google Scholar 

  • Fisher J B, Tu K P, Baldocchi D D, 2008. Global estimates of the land-atmosphere water flux based on monthly AVHRR and ISLSCP-II data, validated at 16 FLUXNET sites. Remote Sensing of Environment, 112(3): 901–919.

    Article  Google Scholar 

  • Gao Y H, Liu X X, Min C C et al., 2013. Estimation of the North-South Transect of Eastern China forest biomass using remote sensing and forest inventory data. International Journal of Remote Sensing, 34(15): 5598–5610.

    Article  Google Scholar 

  • Gao Y, Zhu X J, Yu G R et al., 2014. Water use efficiency threshold for terrestrial ecosystem carbon sequestration in China under afforestation. Agricultural and Forest Meteorology, 195: 32–37. doi: https://doi.org/10.1016/j.agrformet.2014.04.010.

    Article  Google Scholar 

  • Good S P, Noone D, Bowen G, 2015. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science, 349(6244): 175–177.

    Article  Google Scholar 

  • Hu Z M, Yu G R, Wang Q F et al., 2009a. Ecosystem level water use efficiency: A review. Acta Ecologica Sinica, 29(3): 1498–1507. (in Chinese)

    Google Scholar 

  • Hu Z M, Yu G R, Zhou Y L et al., 2009b. Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agricultural and Forest Meteorology, 149(9): 1410–1420.

    Article  Google Scholar 

  • Jasechko S, Sharp Z D, Gibson J J et al., 2013. Terrestrial water fluxes dominated by transpiration. Nature, 496(7445): 347–351.

    Article  Google Scholar 

  • Lawrence D M, Thornton P E, Oleson K W et al., 2007. The partitioning of evapotranspiration into transpiration, soil evaporation, and canopy evaporation in a GCM: Impacts on land-atmosphere interaction. Journal of Hydrometeorology, 8(4): 862–880.

    Article  Google Scholar 

  • Lu Q Q, He H L, Zhu X J et al., 2015. Study on the variations of forest evapotranspiration and its components in eastern China. Journal of Natural Resources, 30(9): 1436–1448. (in Chinese)

    Google Scholar 

  • Maxwell R M, Condon L E, 2016. Connections between groundwater flow and transpiration partitioning. Science, 353(6297): 377–380.

    Article  Google Scholar 

  • Miralles D G, De Jeu R A M, Gash J H et al., 2011. Magnitude and variability of land evaporation and its components at the global scale. Hydrology and Earth System Sciences, 15(3): 967–981.

    Article  Google Scholar 

  • Miralles D G, Jimenez C, Jung M et al., 2016. The WACMOS-ET project — Part 2: Evaluation of global terrestrial evaporation data sets. Hydrology and Earth System Sciences, 20(2): 823–842.

    Article  Google Scholar 

  • Quan Q, Zhang F Y, Tian D S et al., 2018. Transpiration dominates ecosystem water-use efficiency in response to warming in an alpine meadow. Journal of Geophysical Research-Biogeosciences, 123(2): 453–462.

    Article  Google Scholar 

  • Schlesinger W H, Jasechko S, 2014. Transpiration in the global water cycle. Agricultural and Forest Meteorology, 189: 115–117. doi: https://doi.org/10.1016/j.agrformet.2014.01.011.

    Article  Google Scholar 

  • Scott R L, Biederman J A, 2017. Partitioning evapotranspiration using long-term carbon dioxide and water vapor fluxes. Geophysical Research Letters, 44(13): 6833–6840.

    Article  Google Scholar 

  • Wang-Erlandsson L, van der Ent R J, Gordon L J et al., 2014. Contrasting roles of interception and transpiration in the hydrological cycle — Part 1: Temporal characteristics over land. Earth System Dynamics, 5(2): 441–469.

    Article  Google Scholar 

  • Wang K C, Dickinson R E, 2012. A Review of Global Terrestrial Evapotranspiration: Observation, Modeling, Climatology, and Climatic Variability. Reviews of Geophysics, 50: RG2005. doi: https://doi.org/10.1029/2011RG000373.

    Article  Google Scholar 

  • Wang L X, Good S P, Caylor K K, 2014. Global synthesis of vegetation control on evapotranspiration partitioning. Geophysical Research Letters, 41(19): 6753–6757.

    Article  Google Scholar 

  • Wei H Q, He H L, LIu M et al., 2012. Modeling evapotranspiration and its components in Qianyanzhou plantation based on remote sensing data. Journal of Natural Resources, 27(5): 778–789. (in Chinese)

    Google Scholar 

  • Wei Z W, Yoshimura K, Wang L X et al., 2017. Revisiting the contribution of transpiration to global terrestrial evapotranspiration. Geophysical Research Letters, 44(6): 2792–2801.

    Article  Google Scholar 

  • Wu H S, Liu H P, Huang D J, 1998. Interception of Precipitation in Dinghushan Evergreen Broadleaf Forest. Research of Forest Ecosystems in Subtropical and Tropical Regions. Beijing: China Meteorological Press. (in Chinese)

    Google Scholar 

  • Xu M J, Wen X F, Wang H M et al., 2014. Effects of climatic factors and ecosystem responses on the inter-annual variability of evapotranspiration in a coniferous plantation in subtropical China. Plos One, 9(1): e85593. doi: https://doi.org/10.1371/journal.pone.0085593.

    Article  Google Scholar 

  • Yu G R, Wang Q F, 2010. Ecophysiology of Plant Photosynthesis, Transpiration, and Water Use. Beijing: Science Press. (in Chinese)

    Google Scholar 

  • Yu G R, Zhang L M, Sun X M et al., 2008. Environmental controls over carbon exchange of three forest ecosystems in eastern China. Global Change Biology, 14(11): 2555–2571.

    Google Scholar 

  • Zhang L X, Hu Z M, Fan J W et al., 2014. A meta-analysis of the canopy light extinction coefficient in terrestrial ecosystems. Frontiers of Earth Science, 8(4): 599–609.

    Article  Google Scholar 

  • Zhou S, Yu B F, Zhang Y et al., 2016. Partitioning evapotranspiration based on the concept of underlying water use efficiency. Water Resources Research, 52(2): 1160–1175.

    Article  Google Scholar 

  • Zhu X J, Yu G R, Hu Z M et al., 2015. Spatiotemporal variations of T/ET (the ratio of transpiration to evapotranspiration) in three forests of eastern China. Ecological Indicators, 52: 411–421. doi: https://doi.org/10.1016/j.ecolind.2014.12.030.

    Article  Google Scholar 

Download references

Acknowledgement

The flux data of CBS, QYZ, DHS sites were obtained from ChinaFLUX, and the simulated transpiration data of the three sites were provided by Dr. Xianjin Zhu and Prof. Guirui Yu, which are highly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoli Ren.

Additional information

Foundation: National Key Research and Development Program of China, No.2015CB954102; National Natural Science Foundation of China, No.31700417, No.41571424

Author: Ren Xiaoli (1984-), PhD

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, X., Lu, Q., He, H. et al. Estimation and analysis of the ratio of transpiration to evapotranspiration in forest ecosystems along the North-South Transect of East China. J. Geogr. Sci. 29, 1807–1822 (2019). https://doi.org/10.1007/s11442-019-1691-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-019-1691-1

Keywords

Navigation