Skip to main content
Log in

Identifying the most important spatially distributed variables for explaining land use patterns in a rural lowland catchment in Germany

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

Land use patterns arise from interactive processes between the physical environment and anthropogenic activities. While land use patterns and the associated explanatory variables have often been analyzed on the large scale, this study aims to determine the most important variables for explaining land use patterns in the 50 km2 catchment of the Kielstau, Germany, which is dominated by agricultural land use. A set of spatially distributed variables including topography, soil properties, socioeconomic variables, and landscape indices are exploited to set up logistic regression models for the land use map of 2017 with detailed agricultural classes. Spatial validation indicates a reasonable performance as the relative operating characteristic (ROC) ranges between 0.73 and 0.97 for all land use classes except for corn (ROC = 0.68). The robustness of the models in time is confirmed by the temporal validation for which the ROC values are on the same level (maximum deviation 0.1). Non-agricultural land use is generally better explained than agricultural land use. The most important variables are the share of drained area, distance to protected areas, population density, and patch fractal dimension. These variables can either be linked to agriculture or the river course of the Kielstau.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alberti M, 2005. The effects of urban patterns on ecosystem function. International Regional Science Review, 28(2): 168–192.

    Article  Google Scholar 

  • Aquilué N, De Cáceres M, Fortin M J et al., 2017. A spatial allocation procedure to model land-use/land-cover changes: Accounting for occurrence and spread processes. Ecological Modelling, 344: 73–86.

    Article  Google Scholar 

  • Arsanjani J J, Helbich M, Kainz W et al., 2013. Integration of logistic regression, Markov chain and cellular automata models to simulate urban expansion. International Journal of Applied Earth Observation and Geoinformation, 21: 265–275.

    Article  Google Scholar 

  • Baumann M, Kuemmerle T, Elbakidze M et al., 2011. Patterns and drivers of post-socialist farmland abandonment in Western Ukraine. Land Use Policy, 28(3): 552–562.

    Article  Google Scholar 

  • BGR, 1999. BUK 200, Bodenubersichtskarte 1:200 000. Bundesanstalt für Geowissenschaften und Rohstoffe: CC.1518 Flensburg, Hannover.

    Google Scholar 

  • Bonan G B, DeFries R S, Coe M T et al., 2012. Land use and climate. In: Land Change Science. Dordrecht: Springer, 301–314.

    Chapter  Google Scholar 

  • Brandes E, McNunn G S, Schulte L A et al., 2016. Subfield profitability analysis reveals an economic case for cropland diversification. Environmental Research Letters, 11(1): 014009.

    Article  Google Scholar 

  • DeFries R, Eshleman K N, 2004. Land-use change and hydrologic processes: A major focus for the future. Hydrological Processes, 18(11): 2183–2186.

    Article  Google Scholar 

  • Deng X, Huang J, Rozelle S et al., 2010. Economic growth and the expansion of urban land in China. Urban Studies, 47(4): 813–843.

    Article  Google Scholar 

  • Dissart J C, Vollet D, 2011. Landscapes and territory-specific economic bases. Land Use Policy, 28(3): 563–573.

    Article  Google Scholar 

  • DWD, 2009. Weather and Climate Data from the German Weather Service., Offenbach, Station Flensburg 1957–2006 and Station Meierwik, 1993–2008, 1993–2008 ed, Offenbach.

  • El-Kawy O A, Rad J, Ismail H et al., 2011. Land use and land cover change detection in the western Nile delta of Egypt using remote sensing data. Applied Geography, 31(2): 483–494.

    Article  Google Scholar 

  • Etter A, McAlpine C, Wilson K et al., 2006. Regional patterns of agricultural land use and deforestation in Colombia. Agriculture, ecosystems & environment, 114(2–4): 369–386.

    Article  Google Scholar 

  • Feranec J, Jaffrain G, Soukup T et al., 2010. Determining changes and flows in European landscapes 1990–2000 using CORINE land cover data. Applied Geography, 30(1): 19–35.

    Article  Google Scholar 

  • Fernandes M R, Aguiar F C, Ferreira M T, 2011. Assessing riparian vegetation structure and the influence of land use using landscape metrics and geostatistical tools. Landscape and Urban Planning, 99(2): 166–177.

    Article  Google Scholar 

  • Fichera C R, Modica G, Pollino M, 2012. Land Cover classification and change-detection analysis using multi-temporal remote sensed imagery and landscape metrics. European Journal of Remote Sensing, 45(1): 1–18.

    Article  Google Scholar 

  • Fohrer N, Dietrich A, Kolychalow O et al., 2014. Assessment of the environmental fate of the herbicides flufenacet and metazachlor with the SWAT model. Journal of Environmental Quality, 43(1): 75–85.

    Article  Google Scholar 

  • Fohrer N, Schmalz B, 2012. Das UNESCO Ökohydrologie-Referenzprojekt Kielstau-Einzugsgebiet-nachhaltiges Wasserressourcenmanagement und Ausbildung im ländlichen Raum (in German). Hydrologie und Wasserbewirtschaftung 56(4):160–168.

    Google Scholar 

  • Fohrer N, Schmalz B, Tavares F et al., 2007. Modelling the landscape water balance of mesoscale lowland catchments considering agricultural drainage systems. Hydrologie und Wasserbewirtschaftung/Hydrology and Water Resources Management-Germany, 51(4): 164–169.

    Google Scholar 

  • Foley J A, DeFries R, Asner G P et al., 2005. Global consequences of land use. Science, 309(5734): 570–574.

    Article  Google Scholar 

  • Forman R T, 2014. Land Mosaics: The Ecology of Landscapes and Regions (1995). Island Press.

  • Forman R T, Godron M, 1981. Patches and structural components for a landscape ecology. BioScience, 31(10): 733–740.

    Article  Google Scholar 

  • Gerrish J, Peterson P, Morrow R, 1995. Distance cattle travel to water affects pasture utilization rate. American Forage and Grassland Council.

  • Golon J, 2009. Enviromental Effects of varied Energe Crop Cultivation Scenarios on a Lowland Catchment in Northern Germany A SWAT Approach, Thesis (Master), Ecology Centre. Kiel University.

  • Hijmans R, van Etten J, Cheng J et al., 2016. Package ‘raster’: Geographic data analysis and modeling. R version 2.5–8.

  • Inkoom J N, Frank S, Greve K et al., 2018. Suitability of different landscape metrics for the assessments of patchy landscapes in west Africa. Ecological Indicators, 85: 117–127.

    Article  Google Scholar 

  • Kandziora M, Dörnhöfer K, Oppelt N et al., 2014. Detecting land use and land cover changes in northern German agricultural landscapes to assess ecosystem service dynamics. Landscape Online, 35.

  • Kok K, Veldkamp A, 2001. Evaluating impact of spatial scales on land use pattern analysis in Central America. Agriculture, Ecosystems & Environment, 85(1–3): 205–221.

    Article  Google Scholar 

  • Lambin E F, Meyfroidt P, 2011. Global land use change, economic globalization, and the looming land scarcity. Proceedings of the National Academy of Sciences, 108(9): 3465–3472.

    Article  Google Scholar 

  • Lambin E F, Turner B L, Geist H J et al., 2001. The causes of land-use and land-cover change: Moving beyond the myths. Global environmental change, 11(4): 261–269.

    Article  Google Scholar 

  • LANU, 2003. LANDESAMT FÜR NATUR UND UMWELT SCHLESWIG-HOLSTEIN: Ausschnitt aus dem Basisgewässernetz des Landes Schleswig-Holstein für das Einzugsgebiet der Treene bis Treia. (Arc-View-Shape), Flintbek.

  • Lawrence D, D’Odorico P, Diekmann L et al., 2007. Ecological feedbacks following deforestation create the potential for a catastrophic ecosystem shift in tropical dry forest. Proceedings of the National Academy of Sciences, 104(52): 20696–20701.

    Article  Google Scholar 

  • Li X, Yeh A G O, 2002. Neural-network-based cellular automata for simulating multiple land use changes using GIS. International Journal of Geographical Information Science 16(4):323–343.

    Article  Google Scholar 

  • Liu G, Jin Q, Li J et al., 2017. Policy factors impact analysis based on remote sensing data and the CLUE-S model in the Lijiang River Basin, China. Catena, 158: 286–297.

    Article  Google Scholar 

  • Liu J, Zhang Z, Xu X et al., 2010. Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20(4): 483–494.

    Article  Google Scholar 

  • Long H, Qu Y, 2018. Land use transitions and land management: A mutual feedback perspective. Land Use Policy, 74: 111–120.

    Article  Google Scholar 

  • LVA, 1992–2004. DEM 25 m Grid Size, DEM 5 m Grid Size Derived from Topographic Maps 1:5 000 and Map of Schleswig-Holstein. Land survey office Schleswig-Holstein: Kiel.

    Google Scholar 

  • LVA, 2013, 2016. ATKIS®-Digitale Orthophotos (DOP) with a ground resolution of 20 cm. Land Survey Office Schleswig-Holstein.

  • LVA, 2016. ATKIS® Digitales Basis-Landschaftsmodell (Basis-DLM). Land Survey Office Schleswig-Holstein: Kiel.

    Google Scholar 

  • LVERMA-SH, Vermessungs-und Katasterverwaltung Schleswig-Holstein, 2004. Automatisierte Liegenschaftskarte (ALK).

  • Mas J F, Kolb M, Paegelow M et al., 2014. Inductive pattern-based land use/cover change models: A comparison of four software packages. Environmental Modelling & Software, 51: 94–111.

    Article  Google Scholar 

  • Mehdi B, Lehner B, Ludwig R, 2018. Modelling crop land use change derived from influencing factors selected and ranked by farmers in North temperate agricultural regions. Science of The Total Environment, 631: 407–420.

    Article  Google Scholar 

  • Mitsuda Y, Ito S, 2011. A review of spatial-explicit factors determining spatial distribution of land use/land-use change. Landscape and Ecological Engineering, 7(1): 117–125.

    Article  Google Scholar 

  • Mottet A, Ladet S, Coqué N et al., 2006. Agricultural land-use change and its drivers in mountain landscapes: A case study in the Pyrenees. Agriculture, Ecosystems & Environment, 114: 296–310.

    Article  Google Scholar 

  • Mustard J F, Defries R S, Fisher T et al., 2012. Land-use and land-cover change pathways and impacts. In: Land Change Science. Dordrecht: Springer, 411–429.

    Chapter  Google Scholar 

  • Müller D, Kuemmerle T, Rusu M et al., 2009. Lost in transition: Determinants of post-socialist cropland abandonment in Romania. Journal of Land Use Science, 4(1/2): 109–129.

    Article  Google Scholar 

  • Neupane R P, Kumar S, 2015. Estimating the effects of potential climate and land use changes on hydrologic processes of a large agriculture dominated watershed. Journal of Hydrology, 529: 418–429.

    Article  Google Scholar 

  • Onate-Valdivieso F, Sendra J B, 2010. Application of GIS and remote sensing techniques in generation of land use scenarios for hydrological modeling. Journal of Hydrology, 395(3/4): 256–263.

    Article  Google Scholar 

  • Pearce J, Ferrier S, 2000. Evaluating the predictive performance of habitat models developed using logistic regression. Ecological Modelling, 133(3): 225–245.

    Article  Google Scholar 

  • Piquer-Rodriguez M, Butsic V, Gärtner P et al., 2018. Drivers of agricultural land-use change in the Argentine Pampas and Chaco regions. Applied Geography, 91: 111–122.

    Article  Google Scholar 

  • Pontius Jr R G, Huffaker D, Denman K, 2004. Useful techniques of validation for spatially explicit land-change models. Ecological Modelling, 179(4): 445–461.

    Article  Google Scholar 

  • Pontius Jr R G, Schneider L C, 2001. Land-cover change model validation by an ROC method for the Ipswich watershed, Massachusetts, USA. Agriculture, Ecosystems & Environment, 85(1–3): 239–248.

    Article  Google Scholar 

  • Qasim M, Hubacek K, Termansen M et al., 2011. Spatial and temporal dynamics of land use pattern in District Swat, Hindu Kush Himalayan region of Pakistan. Applied Geography, 31(2): 820–828.

    Article  Google Scholar 

  • Qureshi M E, Hanjra M A, Ward J, 2013. Impact of water scarcity in Australia on global food security in an era of climate change. Food Policy, 38: 136–145.

    Article  Google Scholar 

  • Ramachandran R M, Roy P S, Chakravarthi V et al., 2018. Long-term land use and land cover changes (1920–2015) in Eastern Ghats, India: Pattern of dynamics and challenges in plant species conservation. Ecological Indicators, 85: 21–36.

    Article  Google Scholar 

  • Riedel W, Polensky R, 1987. Umweltatlas für den Landesteil Schleswig. Forschungsprojekt des Institutes für Regionale Forschung und Information im Deutschen Grenzverein e.V. in Zusammenarbeit mit der Zentralstelle für Landeskunde des Schleswig-Holsteinischen Heimatbundes.

  • Rounsevell M D A, Annetts J E, Audsley E et al., 2003. Modelling the spatial distribution of agricultural land use at the regional scale. Agriculture, Ecosystems & Environment, 95(2/3): 465–479.

    Article  Google Scholar 

  • Semwal R L, Nautiyal S, Sen K K et al., 2004. Patterns and ecological implications of agricultural land-use changes: A case study from central Himalaya, India. Agriculture, Ecosystems & Environment, 102(1): 81–92.

    Article  Google Scholar 

  • Seto K C, Fragkias M, 2005. Quantifying spatiotemporal patterns of urban land-use change in four cities of China with time series landscape metrics. Landscape Ecology, 20(7): 871–888.

    Article  Google Scholar 

  • Shu B, Zhang H, Li Y et al., 2014. Spatiotemporal variation analysis of driving forces of urban land spatial expansion using logistic regression: A case study of port towns in Taicang City, China. Habitat International, 43: 181–190.

    Article  Google Scholar 

  • Silverman B W, 1981. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society. Series B (Methodological), 97–99.

    Google Scholar 

  • Sing T, Sander O, Beerenwinkel N et al., 2005. ROCR: Visualizing classifier performance in R. Bioinformatics, 21(20): 3940–3941.

    Article  Google Scholar 

  • Statistikamt Nord, S.A.f.H.u.S-H, 2013, 2015. Bevölkerung der Gemeinden in Schleswig-Holstein 2. Quartal 2013; Bevölkerungsentwicklung in den Gemeinden Schleswig-Holsteins 2015.

  • StiftungNaturschutz, 2016. Flächenmanagement Kreis SL-Stiftung Naturschutz Schleswig-Holstein. http://www.stiftungsland.de/.

  • Ulrich U, Hörmann G, Unger M et al., 2018. Lentic small water bodies: Variability of pesticide transport and transformation patterns. Science of the Total Environment, 618: 26–38.

    Article  Google Scholar 

  • van Meijl H, Van Rheenen T, Tabeau A et al., 2006. The impact of different policy environments on agricultural land use in Europe. Agriculture, Ecosystems & Environment, 114(1): 21–38.

    Article  Google Scholar 

  • Verburg P H, van Eck J R R, de Nijs T C M et al., 2004. Determinants of land-use change patterns in the Netherlands. Environment and Planning B: Planning and Design, 31(1): 125–150.

    Article  Google Scholar 

  • Vleeshouwers L M, Verhagen A, 2002. Carbon emission and sequestration by agricultural land use: A model study for Europe. Global Change Biology, 8(6): 519–530.

    Article  Google Scholar 

  • Wagner P D, Hoermann G, Schmalz B et al., 2018. Characterisation of the water and nutrient balance in the rural lowland catchment of the Kielstau (in German). Hydrologie und Wasserbewirtschaftung, 62(3): 145–158.

    Google Scholar 

  • Wagner P D, Waske B, 2016. Importance of spatially distributed hydrologic variables for land use change modeling. Environmental Modelling & Software, 83: 245–254.

    Article  Google Scholar 

  • Wu X, Hu Y, He H S et al., 2009. Performance evaluation of the SLEUTH model in the Shenyang metropolitan area of northeastern China. Environmental Modeling & Assessment, 14(2): 221–230.

    Article  Google Scholar 

  • Yan Q, Bian Z, Zhang P et al., 2011. Spatialization of population density based on residential spots density. Geography and Geoinformatics, 27: 95–98. (in Chinese)

    Google Scholar 

  • Yang X, Zheng X Q, Chen R, 2014. A land use change model: Integrating landscape pattern indexes and Markov-CA. Ecological Modelling, 283: 1–7.

    Article  Google Scholar 

  • Yang X, Zheng X Q, Lv L N, 2012. A spatiotemporal model of land use change based on ant colony optimization, Markov chain and cellular automata. Ecological Modelling, 233: 11–19.

    Article  Google Scholar 

  • Yue W, Liu Y, Fan P, 2013. Measuring urban sprawl and its drivers in large Chinese cities: The case of Hangzhou. Land Use Policy, 31: 358–370.

    Article  Google Scholar 

  • Zhang P, Liu Y, Pan Y et al., 2013. Land use pattern optimization based on CLUE-S and SWAT models for agricultural non-point source pollution control. Mathematical and Computer Modelling, 58(3/4): 588–595.

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the financial support from the China Scholarship Council (CSC) through a scholarship for the first author. We thank three reviewers and the editor for their detailed and constructive comments that helped us to improve the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaogui Lei.

Additional information

Author: Chaogui Lei, M.Sc

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lei, C., Wagner, P.D. & Fohrer, N. Identifying the most important spatially distributed variables for explaining land use patterns in a rural lowland catchment in Germany. J. Geogr. Sci. 29, 1788–1806 (2019). https://doi.org/10.1007/s11442-019-1690-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-019-1690-2

Keywords

Navigation