Skip to main content
Log in

Automatic mapping of lunar landforms using DEM-derived geomorphometric parameters

  • Published:
Journal of Geographical Sciences Aims and scope Submit manuscript

Abstract

Developing approaches to automate the analysis of the massive amounts of data sent back from the Moon will generate significant benefits for the field of lunar geomorphology. In this paper, we outline an automated method for mapping lunar landforms that is based on digital terrain analysis. An iterative self-organizing (ISO) cluster unsupervised classification enables the automatic mapping of landforms via a series of input raster bands that utilize six geomorphometric parameters. These parameters divide landforms into a number of spatially extended, topographically homogeneous segments that exhibit similar terrain attributes and neighborhood properties. To illustrate the applicability of our approach, we apply it to three representative test sites on the Moon, automatically presenting our results as a thematic landform map. We also quantitatively evaluated this approach using a series of confusion matrices, achieving overall accuracies as high as 83.34% and Kappa coefficients (K) as high as 0.77. An immediate version of our algorithm can also be applied for automatically mapping large-scale lunar landforms and for the quantitative comparison of lunar surface morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adediran A O, Parcharidis I, Poscolieri M et al., 2004. Computer-assisted discrimination of morphological units on north-central Crete (Greece) by applying multivariate statistics to local relief gradients. Geomorphology, 58: 357–370. doi: 10.1016/j.geomorph.2003.07.024.

    Article  Google Scholar 

  • Bolongaro-Crevenna A, Torres-Rodriguez V, Sorani V et al., 2005. Geomorphometric analysis for characterizing landforms in Morelos State, Mexico. Geomorphology, 67(3): 407–422. doi: 10.1016/j.geomorph.2004.11.007.

    Article  Google Scholar 

  • Bue B D, Stepinski T F, 2006. Machine detection of Martian craters from digital topography. In: 37th Annual Lunar and Planetary Science Conference, 37: 1178.

    Google Scholar 

  • Burrough P A, McDonnell R A, 2011. Principles of Geographical Information Systems (Vol. 19988). Oxford: Oxford University Press.

    Google Scholar 

  • Burrough P A, Gaans P F M V, Macmillan R A, 2000. High-resolution landform classification using fuzzy k-means. Fuzzy Sets and System, 113(1): 37–52. doi: 10.1016/S0165-0114(99)00011-1.

    Article  Google Scholar 

  • Butle D R, Walsh S J, 1998. The application of remote sensing and geographic information systems in the study of geomorphology: An introduction. Geomorphology, 21(3): 179–181. doi: 10.1016/S0169-555X(97)00056-1.

    Article  Google Scholar 

  • Cohen J, 1960. A coefficient of agreement for nominal scales. Educational and Psychological Measurement, 20(1): 37–46. doi: 10.1177/001316446002000104.

    Article  Google Scholar 

  • Dehn M, Gärtner H, Dikau R, 2001. Principles of semantic modeling of landform structures. Computer Geoscience, 27: 1005–1010. doi: 10.1016/S0098-3004(00)00138-2.

    Article  Google Scholar 

  • Drăguţ L, Blaschke T, 2006. Automated classification of landform elements using object-based image analysis. Geomorphology, 81(3): 330–344. doi: 10.1016/j.geomorph.2006.04.013.

    Google Scholar 

  • Ehlers M, Janowsky R, Gaehler M, 2002. New remote sensing concepts for environmental monitoring. In: International Society for Optics and Photonics. International Symposium on Remote Sensing, 1–12.

    Google Scholar 

  • Florinsky I V, 1998. Accuracy of local topographic variables derived from digital elevation models. International Journal of Geographical Information Science, 12(1): 47–62. doi: 10.1080/136588198242003.

    Article  Google Scholar 

  • Fortezzo C M, Hare T M, 2013. Completed digital renovation of the 1:5,000,000 lunar geologic map series. Lunar and Planetary Science Conference, Vol. 44.

    Google Scholar 

  • Gaddis L R, Skinner J A J, Hare T et al., 2006. The lunar geologic mapping program and status of Copernicus quadrangle mapping. In: 37th Annual Lunar and Planetary Science Conference, Vol. 37, p.2135.

    Google Scholar 

  • Giles P T, Franklin S E, 1998. An automated approach to the classification of the slope units using digital data. Geomorphology, 21(3): 251–264. doi: 10.1016/S0169-555X(97)00064-0.

    Article  Google Scholar 

  • Guth P L, 1995. Slope and aspect calculations on gridded digital elevation models: Examples from a geomorphometric toolbox for personal computers. Zeitschrift fur Geomorphologie Supplementband, 101: 31–52.

    Google Scholar 

  • Hengl T, Rossiter D G, 2003. Supervised landform classification to enhance and replace photo-interpretation in semi-detailed soil survey. Soil Science Society of America Journal, 67: 1810–1822. doi: 10.2136/sssaj-2003.1810.

    Article  Google Scholar 

  • Hodgson M E, 1998. Comparison of angles from surface slope/aspect algorithms. Cartography and Geographic Information Systems, 25(3): 173–185. doi: 10.1559/152304098782383106.

    Article  Google Scholar 

  • Iwahashi J, Pike R J, 2007. Automated classifications of topography from DEMs by an unsupervised nested-means algorithm and a three-part geometric signature. Geomorphology, 86: 409–440. doi: 10.1016/j.geomorph. 2006.09.012.

    Article  Google Scholar 

  • Jenks G F, Caspall F C, 1971. Error on choroplethic maps: Definition, measurement, reduction. Annals of the Association of American Geographers, 61(2): 217–244. doi: 10.1111/j.1467-8306.1971.tb00779.x.

    Article  Google Scholar 

  • Jones K H, 1998. A comparison of algorithms used to compute hill slope as a property of the DEM. Computer Geoscience, 24: 315–324. doi: 10.1016/S0098-3004(98)00032-6.

    Article  Google Scholar 

  • Kohonen T, 1982. Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43(1): 59–69. doi: 10.1016/S0925-2312(98)00030-7.

    Article  Google Scholar 

  • Lewis H G, Brown M, 2001. A generalized confusion matrix for assessing area estimates from remotely sensed data. International Journal of Remote Sensing, 22(16): 3223–3235. doi: 10.1080/01431160152558332.

    Article  Google Scholar 

  • Miliaresis G C, 2001. Extraction of bajadas from digital elevation models and satellite imagery. Computer Geoscience, 27(10): 1157–1167. doi: 10.1016/S0098-3004(01)00032-2.

    Article  Google Scholar 

  • O'Callaghan J F, Mark D M, 1984. The extraction of drainage networks from digital elevation data. Computer Vision, Graphics, and Image Processing, 28(3): 323–344. doi: 10.1016/S0734-189X(84)80011-0.

    Article  Google Scholar 

  • Prima O D A, Echigo A, Yokoyama R et al., 2006. Supervised landform classification of Northeast Honshu from DEM-derived thematic maps. Geomorphology, 78: 373–386. doi: 10.1016/j.geomorph.2006.02.005.

    Article  Google Scholar 

  • Smith D E, Zuber M T, Jackson G B et al., 2010. The lunar orbiter laser altimeter investigation on the lunar reconnaissance orbiter mission. Space Science Review, 150(1–4): 209–241. doi: 10.1007/s11214-009-9512-y.

    Article  Google Scholar 

  • Stepinski T F, Collier M L, 2004. Extraction of Martian valley networks from digital topography. Journal of Geophysical Research, Planets, 109(E11): 179–204. doi: 10.1029/2004JE002269.

    Google Scholar 

  • Stepinski T F, Vilalta R, 2005. Digital topography models for Martian surfaces. IEEE Geoscience and Remote Sensing Letters, 2(3): 260–264. doi: 10.1109/LGRS.2005.848509.

    Article  Google Scholar 

  • Tarboton D G, Bras R L, Rodriguez-Iturbe I, 1989. The analysis of river basins and channel networks using digital terrain data. Technical Report No. 326, Ralf M. Cambridge: Parsons Laboratory, MIT.

    Google Scholar 

  • Wang J, Cheng W M, Zhou C H, 2015. A Chang’E global catalog of lunar impact craters. Planet Space Science, 112: 42–45. doi: 10.1016/j.pss.2015.04.012.

    Article  Google Scholar 

  • Wessel P, Smith W H, 2001. The Generic Mapping Tools. http://gmt.soest.hawaii.edu.

    Google Scholar 

Download references

Acknowledgments

The LOLA DEM data and lunar geologic map used in this study were provided by the USGS. We also thank Professor Tomasz F. Stepinski for his considerable work on the recognition approach used on Mars; his contribution significantly influenced this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiming Cheng.

Additional information

Foundation: National Natural Science Foundation of China, No.41571388; National Special Basic Research Fund, No.2015FY210500

Author: Wang Jiao (1990–), PhD, specialized in planetary geomorphology and spatial analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cheng, W., Zhou, C. et al. Automatic mapping of lunar landforms using DEM-derived geomorphometric parameters. J. Geogr. Sci. 27, 1413–1427 (2017). https://doi.org/10.1007/s11442-017-1443-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11442-017-1443-z

Keywords

Navigation