Agricultural Outlook Forum, 2012. The world and United States cotton outlook. United States Department of Agriculture.
Google Scholar
Anderson J R, 1977. Land use and land cover changes: A framework for monitoring. Journal of Research by the Geological Survey, 5: 143–153.
Google Scholar
Barraza V, Grings F, Salvia M et al., 2013. Monitoring and modelling land surface dynamics in Bermejo River Basin, Argentina: Time series analysis of MODIS NDVI data. International Journal of Remote Sensing, 34(15): 5429–5451. doi: 10.1080/01431161.2013.791759.
Article
Google Scholar
Bastiannssen W G M, 1998a. Remote sensing in water resources management: The state of the art. International Water Management Institute, Colombo, Sri Lanka.
Google Scholar
Bastiaanssen W G M, Menenti M, Feddes R A et al., 1998b. A remote sensing surface energy balance algorithm for land (SEBAL) formulation. J. Hydrol., 212/213: 198–212.
Article
Google Scholar
Black A, Stephen H, 2014. GIScience & remote sensing relating temperature trends to the normalized difference vegetation index in Las Vegas. GIScience and Remote Sensing, 51(4): 468–482.
Article
Google Scholar
Campbell J B, 2002. Introduction to Remote Sensing. New York: The Guilford Press.
Google Scholar
Cheema M J M, Bastiaanssen W G M, 2010. Land use and land cover classification in the irrigated Indus Basin using growth phenology information from satellite data to support water management analysis. Agricultural Water Management, 97(10): 1541–1552. doi: 10.1016/j.agwat.2010.05.009.
Article
Google Scholar
Congalton R, Green K, 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Boca Raton: CRC/Lewis Press, FL. 137 p.
Google Scholar
Congalton R G, 1996. Accuracy assessment: A critical component of land cover mapping in gap analysis: A landscape approach to biodiversity planning. A Peer-Reviewed Proceedings of the ASPRS/GAP Symposium, February 27–March 2, 1995, Charlotte, N.C. 119–131.
Google Scholar
Dappen Patti R, Ratcliffe I C, Robbins C R et al., 2008. Mapping agricultural land cover for hydrologic modeling in the Platte River Watershed of Nebraska. Great Plains Research: A Journal of Natural and Social Sciences, Paper 926, http://digitalcommons.unl.edu/greatplainsresearch/926.
Google Scholar
Ding H, Shi W, 2013. Land-use/land-cover change and its influence on surface temperature: A case study in Beijing City. International Journal of Remote Sensing, 34(15): 5503–5517. doi: 10.1080/01431161.2013.792966.
Article
Google Scholar
Douglas K B, Mark A F, 2013. Forecasting crop yield using remotely sensed vegetation indices and crop phenology metrics. Agricultural and Forest Meteorology, 173: 74–84.
Article
Google Scholar
Fang W, Chen J, Shi P, 2005. Variability of the phenological stages of winter wheat in the North China Plain with NOAA/AVHRR NDVI data (1982–2000). IEEE International Geoscience and Remote Sensing Symposium Proceedings, 5: 3124–3127.
Google Scholar
Fisher P F, 2010. Remote sensing of land cover classes as type 2 fuzzy sets. Remote Sensing of Environment, 114: 309–321.
Article
Google Scholar
Foody G M, 2002. Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80: 185–201.
Article
Google Scholar
Gao X, Huete A R, Ni W et al., 2000. Optical-biophysical relationships of vegetation spectra without back-ground contamination. Remote Sensing of Environment, 74: 609–620.
Article
Google Scholar
Giri, Chandra, Jenkins C, 2005. Land cover mapping of greater Mesoamerica using MODIS data. Remote Sensing, 31(4): 274–282. Retrieved at http://thepimmgroup.org/wpcontent/uploads/2007/11/remotesensing2.pdf.
Google Scholar
Gong P, Wang J, Yu L et al., 2013. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. International Journal of Remote Sensing, 34(7): 2607–2654. doi: 10.1080/01431161.2012.748992.
Article
Google Scholar
Gumma M K, Nelson A, Thenkabail P S et al., 2011. Mapping rice areas of South Asia using MODIS multitemporal data. J. Applied Remote Sensing, 5(1): 53547. doi: 10.1117/1.3619838.
Article
Google Scholar
Jensen J R, 1996. Introductory Digital Image Processing: A Remote Sensing Perspective. 2nd ed. New Jersey: Prentice-Hall, 316p.
Google Scholar
Jeong S, Jang K, Hong S et al., 2011. Detection of irrigation timing and the mapping of paddy cover in Korea using MODIS images data. Korean Journal of Agricultural and Forest Meteorology, 13: 69–78.
Article
Google Scholar
Julien Y, Sobrino J A, 2009. Global land surface phenology trends from GIMMS database. International Journal of Remote Sensing, 30: 3495–3513.
Article
Google Scholar
Kim, Y. 2013. Drought and elevation effects on MODIS vegetation indices in northern Arizona ecosystems. International Journal of Remote Sensing, 34(14): 4889–4899. doi: 10.1080/2150704X.2013.781700.
Article
Google Scholar
Kimaro T A, Tachikawa Y, Takara K, 2005. Distributed hydrologic simulations to analyze the impacts of land use changes on flood characteristics in the Yasu River Basin in Japan. Journal of Natural Disaster Sciences, 27(2): 85–94.
Google Scholar
Latifovic R, Olthof I, 2004. Accuracy assessment using sub-pixel fractional error matrices of global land cover products derived from satellite data. Remote Sensing of Environment, 90: 153–165.
Article
Google Scholar
Leff B, Ramankutty N, Foley J A, 2004. Geographic distribution of major crops across the world. Global Biogeochem. Cycles, 18, GB 1009. doi: 10.1029/203GB002108.
Google Scholar
Liang L, Gong P, 2013. Evaluation of global land cover maps for cropland area estimation in the conterminous United States. International Journal of Digital Earth: 1–16. doi: 10.1080/17538947.2013.854414.
Google Scholar
Lorencov A E, Fr Elichov A J, Nelson E et al., 2013. Past and future impacts of land use and climate change on agricultural ecosystem services in the Czech Republic. Land Use Policy, 33: 183–194.
Article
Google Scholar
Lu D, Li G, Moran E et al., 2013. Spatiotemporal analysis of land use and land cover change in the Brazilian Amazon. International Journal of Remote Sensing, 34(16): 5953–5978. doi:10.1080/01431161.2013.802825.
Article
Google Scholar
Matthews E, 1983. Global vegetation and landuse: New high resolution data bases for climate studies. Journal of Climate and Applied Meteorology, 22: 474–487.
Article
Google Scholar
Mitrakis N E, Mallinis G, Koutsias N et al., 2011. Burned area mapping in Mediterranean environment using medium-resolution multi-spectral data and a neuro-fuzzy classifier. International Journal of Image and Data Fusion, 1–20.
Google Scholar
Molden D, 1997. Accounting for water use and productivity. SWIM paper 1. Colombo, Srilanka.
Google Scholar
Morton D C, DeFries R S, Shimabukuro Y E et al., 2006. Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 103(39): 14637–14641.
Article
Google Scholar
Niu Z, Zhang H, Wang X et al., 2012. Mapping wetland changes in China between 1978 and 2008. Chinese Science Bulletin, 57(22): 2813–2823. doi: 10.1007/s11434-012-5093-3.
Article
Google Scholar
Osborne P, Alonso J, Bryant R, 2001. Modelling landscape-scale habitat use using GIS and remote sensing: A case study with great bustards. Journal of Applied Ecology, 38: 458–471.
Article
Google Scholar
Oslon J S, 1994. Global ecosystem framework definitions. USGS EROS Data Center Internal Report, Sioux Falls, SD, 37p.
Google Scholar
Peng D, Huete A R, Huang J et al., 2011. Detection and estimation of mixed paddy rice cropping patterns with MODIS data. International Journal of Applied Earth Observation and Geoinformation, 13: 13–23.
Article
Google Scholar
Pettorelli N, 2013. The Normalized Difference Vegetation Index. Oxford: Oxford University Press.
Book
Google Scholar
Portmann F T, Siebert S, Döll P, 2010. MIRCA2000-Global monthly irrigated and rainfed crop areas around the year 2000: A new high-resolution data set for agricultural and hydrological modeling. Global Biogeochemical Cycles, 24: GB1011.
Article
Google Scholar
Prakasam C, 2010. Land use and land cover change detection through remote sensing approach: A case study of Kodaikanal taluk, Tamil nadu. International Journal of Geomatics and Geosciences, 1(2): 150–158.
Google Scholar
Reed B C, Brown J F, VanderZee D et al., 1994. Measuring phenological variability from satellite imagery. Journal of Vegetation Science, 5: 703–714.
Article
Google Scholar
Reis S, 2008. Analyzing land use/land cover changes using remote sensing and GIS in Rize, North-East Turkey. Sensors, 8(10): 6188–6202. doi: 10.3390/s8106188.
Article
Google Scholar
Schilling K E, Jha M K, Zhang Y et al., 2008. Impact of land use and land cover change on the water balance of a large agricultural watershed: Historical effects and future directions. Water Resources Research, 44(7): 1–12. Available at: http://doi.wiley.com/10.1029/2007WR006644 [Accessed October 8, 2014].
Article
Google Scholar
Shao Y, Fan X, Liu H et al., 2001. Rice monitoring and production estimation using multitemporal RADARSAT. Remote Sensing of Environment, 76(3): 310–325. doi: 10.1016/S0034-4257(00)00212-1.
Article
Google Scholar
Shi J, Huang J, Zhang F, 2013. Multi-year monitoring of paddy rice planting area in Northeast China using MODIS time series data. Journal of Zhejiang University (Science B), 14(10) (October): 934–946. doi: 10.1631/jzus.B1200352.
Article
Google Scholar
Thi T, Nguyen H, De-Bie C A J M et al., 2012. Mapping the irrigated rice cropping patterns of the Mekong delta, Vietnam, through hyper-temporal SPOT NDVI image analysis. International Journal of Remote Sensing, 33(2): 415–434.
Article
Google Scholar
Tou J T, Gonzalez R C, 1974. Pattern Recognition Principles. London: Addison-Wesley, 1974.
Google Scholar
Tucker C J, 1979. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sensing of Environment, 8: 127–150.
Article
Google Scholar
Tucker C J, Vanpraet C L, Sharman M J et al., 1985. Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel: 1980–1984. Remote Sensing of Environment, 17: 233–249.
Article
Google Scholar
Usman M, Liedl R, Awan U K, 2015a. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan. J. Hydrol. doi: 10.1016/j.jhydrol.2015.03.031.
Google Scholar
Usman M, Liedl R, Kavousi A, 2015b. Estimation of distributed seasonal net recharge by modern satellite data in irrigated agricultural regions of Pakistan. Environ. Earth Sciences. doi: 10.1007/s12665-015-4139-7.
Google Scholar
Usman M, Liedl R, Shahid M A M, 2014. Managing irrigation water by yield and water productivity assessment of a rice-wheat system using remote sensing. Journal of Irrigation and Drainage Engineering. doi: 10.1061/(ASCE)IR.1943-4774.0000732.
Google Scholar
Wajid A, Ahmad A, Khaliq T et al., 2010. Quantification of growth, yield and radiation use efficiency of promising cotton cultivars at varying nitrogen levels. Pakistan Journal of Botany, 42(3): 1703–1711.
Google Scholar
Wajid A, Hussain K, Maqsood M et al., 2007. Simulation modeling of growth, development and grain yield of wheat under semi arid conditions of Pakistan. Pakistan Journal of Agricultural Sciences, 44(2): 194–199.
Google Scholar
Wardlow B D, Egbert S L, Kastens J H, 2007. Analysis of time-series MODIS 250 m vegetation index data for crop classification in the U.S. Central Great Plains. Drought Mitigation Center Faculty Publications. Paper 2. http://digitalcommons.unl.edu/droughtfacpub/2.
Google Scholar
Wegehenkel M, 2009. Modeling of vegetation dynamics in hydrological models for the assessment of the effects of climate change on evapotranspiration and groundwater recharge. Adv. Geosci., 21: 109–115. doi: 10.5194/adgeo-21-109-2009.
Article
Google Scholar
Wilson M, Henderson-Sellers A, 1985. A global archive of land cover and soils data for use in general circulation models. Journal of Climatology, 5: 119–143.
Article
Google Scholar
Xiao X, Boles S, Frolking S et al., 2006. Mapping paddy rice agriculture in South and South-east Asia using multi-temporal MODIS images. Remote Sensing of Environment, 100: 95–113. http://dx.doi.org/10.1016/j.rse.2005.10.004.
Article
Google Scholar
Yu L, Wang J, Gong P, 2013. Improving 30 m global land-cover map FROM-GLC with time series MODIS and auxiliary data sets: A segmentation-based approach. International Journal of Remote Sensing, 34(16): 5851–5867. doi: 10.1080/01431161.2013.798055.
Article
Google Scholar
Zhao L, Xia J, Xu C et al., 2013. Evapotranspiration estimation methods in hydrological models. J. Geogr. Sciences, 23(2): 359–369. doi: 10.1007/s11442-013-1015-9.
Article
Google Scholar
Zheng P Q, Baetz B W, 1999. GIS-based analysis of development options from a hydrology perspective. Journal of Urban Planning and Development, 125: 164–180.
Article
Google Scholar