Advertisement

Journal of Geographical Sciences

, Volume 25, Issue 9, pp 1027–1044 | Cite as

Impacts of climate variability and extremes on global net primary production in the first decade of the 21st century

  • Shufen PanEmail author
  • Hanqin Tian
  • Shree R. S. Dangal
  • Zhiyun Ouyang
  • Chaoqun Lu
  • Jia Yang
  • Bo Tao
  • Wei Ren
  • Kamaljit Banger
  • Qichun Yang
  • Bowen Zhang
Article

Abstract

A wide variety of studies have estimated the magnitude of global terrestrial net primary production (NPP), but its variations, both spatially and temporally, still remain uncertain. By using an improved process-based terrestrial ecosystem model (DLEM, Dynamic Land Ecosystem Model), we provide an estimate of global terrestrial NPP induced by multiple environmental factors and examine the response of terrestrial NPP to climate variability at biome and global levels and along latitudes throughout the first decade of the 21st century. The model simulation estimates an average global terrestrial NPP of 54.6 Pg C yr–1 during 2000–2009, varying from 52.8 Pg C yr–1 in the dry year of 2002 to 56.4 Pg C yr–1 in the wet year of 2008. In wet years, a large increase in terrestrial NPP compared to the decadal mean was prevalent in Amazonia, Africa and Australia. In dry years, however, we found a 3.2% reduction in global terrestrial NPP compared to the decadal mean, primarily due to limited moisture supply in tropical regions. At a global level, precipitation explained approximately 63% of the variation in terrestrial NPP, while the rest was attributed to changes in temperature and other environmental factors. Precipitation was the major factor determining inter-annual variation in terrestrial NPP in low-latitude regions. However, in mid- and high-latitude regions, temperature variability largely controlled the magnitude of terrestrial NPP. Our results imply that projected climate warming and increasing climate extreme events would alter the magnitude and spatiotemporal patterns of global terrestrial NPP.

Keywords

climate variability climate extreme drought global terrestrial ecosystem net primary production (NPP) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahlström A, Miller PA, Smith B, 2012. Too early to infer a global NPP decline since 2000. Geophysical Research Letters, 39(15). doi: 10.1029/2012GL0523–6.CrossRefGoogle Scholar
  2. Beer C, Reichstein M, Tomelleri E et al., 2010. Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329(5993): 834–838. doi: 10.1126/science.1184-84.CrossRefGoogle Scholar
  3. Bonan GB, 1996. Land surface model (LSM version 1.0) for ecological, hydrological, and atmospheric studies: Technical description and users guide. Technical note: National Center for Atmospheric Research, Boulder, CO (United States). Climate and Global Dynamics Div.Google Scholar
  4. Chen G, Tian H, Zhang C et al., 2012. Drought in the Southern United States over the 20th century: Variability and its impacts on terrestrial ecosystem productivity and carbon storage. Climatic Change, 114(2): 379–397. doi: 10.1007/s10584-012-0410.CrossRefGoogle Scholar
  5. Ciais P, Reichstein M, Viovy N et al., 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature, 437(7058): 529–533. doi: 10.1038/nature039-2.CrossRefGoogle Scholar
  6. Collatz GJ, Ball JT, Grivet C et al., 1991. Physiological and environmental regulation of stomatal conductance, photosynthesis and transpiration: A model that includes a laminar boundary layer. Agricultural and Forest Meteorology, 54(2): 107–136. doi: 10.1016/0168-vn1923(91)90002-8.CrossRefGoogle Scholar
  7. Costanza R, d'Arge R, Groot RD et al., 1998. The value of the world's ecosystem services and natural capital. Ecological Economics, 25: 3–15.CrossRefGoogle Scholar
  8. Cramer W, Kicklighter D, Bondeau A et al., 1999. Comparing global models of terrestrial net primary productivity (NPP): Overview and key results. Global Change Biology, 5(S1): 1–15. doi: 10.1046/j.1365-2486. 1999.00009.x.CrossRefGoogle Scholar
  9. Dentener F, 2006. Global maps of atmospheric nitrogen deposition, 1860, 1993, and 2050. Data set. Available on-line (http://daac. ornl. gov/) from Oak Ridge National Laboratory Distributed Active Archive Center, Oak Ridge, TN, USA.CrossRefGoogle Scholar
  10. Dermody O, 2006. Mucking through multifactor experiments: Design and analysis of multifactor studies in global change research. New Phytologist, 172(4): 598–600. doi: 10.1111/j.1469-8137.2006.01921.x.CrossRefGoogle Scholar
  11. Farquhar G, von Caemmerer SV, Berry J, 1980. A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta, 149(1): 78–90. doi: 10.1007/BF0038-231.Google Scholar
  12. Felzer B, Kicklighter D, Melillo J et al., 2004. Effects of ozone on net primary production and carbon sequestration in the conterminous United States using a biogeochemistry model. Tellus B, 56(3): 230–248. doi: 10.1111/j.1600-0889.2004.00097.x.CrossRefGoogle Scholar
  13. Huntzinger D, Post WM, Wei Y et al., 2012. North American Carbon Program (NACP) regional interim synthesis: Terrestrial biospheric model intercomparison. Ecological Modelling, 232: 144–157. doi: 10.1016 j.ecolmodel. 2012.02-004.CrossRefGoogle Scholar
  14. Jung M, Henkel K, Herold M et al., 2006. Exploiting synergies of global land cover products for carbon cycle modeling. Remote Sensing of Environment, 101(4): 534–553. doi: 10.1016/j.rse.2006.01-020.CrossRefGoogle Scholar
  15. Klein Goldewijk K, Beusen A, Van Drecht G et al., 2011. The HYDE 3.1 spatially explicit database of human-induced global land-use change over the past 12,000 years. Global Ecology and Biogeography, 20(1): 73–86. doi: 10.1111/j.1466-8238.2010.00587.x.CrossRefGoogle Scholar
  16. Lewis SL, 2006. Tropical forests and the changing earth system. Philosophical Transactions of the Royal Society B: Biological Sciences, 361(1465): 195–210. doi: 10.1098/rstb.2005-1711.CrossRefGoogle Scholar
  17. Liu M, Tian H, Yang Q et al., 2013. Long-term trends in evapotranspiration and runoff over the drainage basins of the Gulf of Mexico during 1901–2008. Water Resources Research, 49(4): 1988–2012. doi: 10.1002/ wrcr.201-0.CrossRefGoogle Scholar
  18. Lu C, Tian H, 2013. Net greenhouse gas balance in response to nitrogen enrichment: Perspectives from a coupled biogeochemical model. Global Change Biology, 19(2): 571–588. doi: 10.1111/gcb.120-9.CrossRefGoogle Scholar
  19. Lu C, Tian H, Liu M et al., 2012. Effect of nitrogen deposition on China's terrestrial carbon uptake in the context of multifactor environmental changes. Ecological Applications, 22(1): 53–75. doi: 10.1890/10-1685-1.CrossRefGoogle Scholar
  20. Melillo JM, McGuire AD, Kicklighter DW et al., 1993. Global climate change and terrestrial net primary production. Nature, 363(6426): 234–240. doi: 10.1016/j.scitotenv.2004.03-009.CrossRefGoogle Scholar
  21. Mohamed M, Babiker IS, Chen Z et al., 2004. The role of climate variability in the inter-annual variation of terrestrial net primary production (NPP). Science of the Total Environment, 332(1): 123–1–7.Google Scholar
  22. Murphy PG, Lugo AE, 1986. Ecology of tropical dry forest. Annual Review of Ecology and Systematics, 67–88. doi: 10.1146/annurev.es.17.110186.0004-5.Google Scholar
  23. Nemani RR, Keeling CD, Hashimoto H et al. (2003). Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300(5625): 1560–1563. doi: 10.1126/science.1082-50.CrossRefGoogle Scholar
  24. Norby RJ, Luo Y, 2004. Evaluating ecosystem responses to rising atmospheric CO2 and global warming in a multi-factor world. New Phytologist, 162(2): 281–293. doi: 10.1111/j.1469-8137.2004.01047.x.CrossRefGoogle Scholar
  25. Oechel WC, Vourlitis GL, Hastings SJ et al., 2000. Acclimation of ecosystem CO2 exchange in the Alaskan Arctic in response to decadal climate warming. Nature, 406(6799): 978–981. doi: 10.1038/3502-137.CrossRefGoogle Scholar
  26. Pan S, Tian H, Dangal SR et al., 2014a. Complex spatiotemporal responses of global terrestrial primary production to climate change and increasing atmospheric CO2 in the 21st century. PloS One, 9, e112810, doi: 10.1371/journal.pone.0112–10.CrossRefGoogle Scholar
  27. Pan S, Tian H, Dangal SR et al., 2014b. Modeling and monitoring terrestrial primary production in a changing global environment: Toward a multiscale synthesis of observation and simulation. Advances in Meteorology, 17. doi: 10.1155/2014/9659–6.Google Scholar
  28. Piacentini M, Rosina K, 2012. Measuring the Environmental Performance of Metropolitan Areas with Geographic Information Sources. OECD Publishing.Google Scholar
  29. Potter CS, Klooster S, Genovese V, 2012. Net primary production of terrestrial ecosystems from 2000 to 2009. Climatic Change, 115(2): 365–378. doi: 10.1007/s10584-012-0460-2.CrossRefGoogle Scholar
  30. Raupach M, Canadell J, Quéré CL, 2008. Anthropogenic and biophysical contributions to increasing atmospheric CO2 growth rate and airborne fraction. Biogeosciences, 5(6): 1601–1613. doi: 10.5194/bg-5-1601-2008.CrossRefGoogle Scholar
  31. Ren W, Tian H, Liu M et al., 2007. Effects of tropospheric ozone pollution on net primary productivity and carbon storage in terrestrial ecosystems of China. Journal of Geophysical Research: Atmospheres (1984–2012): 112(D22). doi: 10.1029/2007JD0085-1.Google Scholar
  32. Ren W, Tian H, Tao B et al., 2011. Impacts of tropospheric ozone and climate change on net primary productivity and net carbon exchange of China's forest ecosystems. Global Ecology and Biogeography, 20(3): 391–406. doi: 10.1111/j.1466-8238.2010.00606.x.CrossRefGoogle Scholar
  33. Ruimy A, Dedieu G, Saugier B, 1996. TURC: A diagnostic model of continental gross primary productivity and net primary productivity. Global Biogeochemical Cycles, 10(2): 269–285. doi: 10.1029/96GB003-9.CrossRefGoogle Scholar
  34. Running SW, Nemani RR, Heinsch FA et al., 2004. A continuous satellite-derived measure of global terrestrial primary production. Bioscience, 54(6): 547–560. doi: 10.1641/0006-3568.CrossRefGoogle Scholar
  35. Saxton K, Rawls W, 2006. Soil water characteristic estimates by texture and organic matter for hydrologic solutions. Soil Science Society of America Journal, 70(5): 1569–1578. doi: 10.2136/sssaj2005-0117.CrossRefGoogle Scholar
  36. Sellers P, Randall D, Collatz G et al., 1996. A revised land surface parameterization (SiB2) for atmospheric GCMs. Part I: Model formulation. Journal of Climate, 9(4): 676–705. doi: 10.1175/1520-0442(1996)009<0676:ARLSPF>2.0.CO;2.CrossRefGoogle Scholar
  37. Sitch S, Huntingford C, Gedney N et al., 2008. Evaluation of the terrestrial carbon cycle, future plant geography and climate-carbon cycle feedbacks using five Dynamic Global Vegetation Models (DGVMs). Global Change Biology, 14(9): 2015–2039. doi: 10.1111/j.1365-2486.2008.01626.x.CrossRefGoogle Scholar
  38. Sitch S, Smith B, Prentice IC et al., 2003. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Global Change Biology, 9(2): 161–185. doi: 10.1046/j.1365-2486.2003.00569.x.CrossRefGoogle Scholar
  39. Song X, Tian H, Xu X et al., 2013. Projecting terrestrial carbon sequestration of the southeastern United States in the 21st century. Ecosphere, 4(7): art88. doi: 10.1890/ES12-00398–1.CrossRefGoogle Scholar
  40. Tian H, Chen G, Liu M et al., 2010a. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern United States during 1895–2007. Forest Ecology and Management, 259(7): 1311–1327. doi: 10.1016/j.foreco.2009.10-009.CrossRefGoogle Scholar
  41. Tian H, Chen G, Zhang C et al., 2012. Century-scale responses of ecosystem carbon storage and flux to multiple environmental changes in the southern United States. Ecosystems, 15(4): 674–694. doi: 10.1007/s10021-012-9539-x.CrossRefGoogle Scholar
  42. Tian H, Hall CA, Qi Y, 1998. Modeling primary productivity of the terrestrial biosphere in changing environments: Toward a dynamic biosphere model. Critical Reviews in Plant Sciences, 17(5): 541–5–7.CrossRefGoogle Scholar
  43. Tian H, Liu M, Zhang C et al., 2010b. The dynamic land ecosystem model (DLEM) for simulating terrestrial processes and interactions in the context of multifactor global change. Acta Geographica Sinica, 65(9): 1027–1047. (in Chinese)Google Scholar
  44. Tian H, Melillo J, Kicklighter D et al., 2000. Climatic and biotic controls on annual carbon storage in Amazonian ecosystems. Global Ecology and Biogeography, 9(4): 315–335. doi: 10.1046/j.1365-2699.2000.00198.x.CrossRefGoogle Scholar
  45. Tian H, Melillo J, Lu C et al., 2011. China's terrestrial carbon balance: Contributions from multiple global change factors. Global Biogeochemical Cycles, 25(1). doi: 10.1029/2010GB0038-8.Google Scholar
  46. Tian H, Xu X, Liu M et al., 2010c. Spatial and temporal patterns of CH4 and N2O fluxes in terrestrial ecosystems of North America during 1979–2008: application of a global biogeochemistry model. Biogeosciences, 7(9): 2673–2694. doi: 10.5194/bg-7-2673-2010.CrossRefGoogle Scholar
  47. Van der Wer GR, Randerson JT, Collatz GJ et al., 2004. Continental-scale partitioning of fire emissions during the 1997 to 2001 El Nino/La Nina period. Science, 303(5654): 73–76. doi: 10.1126/science.1090-53.CrossRefGoogle Scholar
  48. Wang W, Dungan J, Hashimoto H et al., 2011. Diagnosing and assessing uncertainties of terrestrial ecosystem models in a multimodel ensemble experiment: 1. Primary production. Global Change Biology, 17(3): 1350–1366. doi: 10.1111/j.1365-2486.2010.02309.x.CrossRefGoogle Scholar
  49. Wei Y, Liu S, Huntzinger D et al., 2013. The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project–Part 2: Environmental driver data. Geoscientific Model Development Discussions, 6(4): 5375–5422. doi: 10.5194/gmdd-6-5375-2013.CrossRefGoogle Scholar
  50. Wu Z, Dijkstra P, Koch GW et al., 2011. Responses of terrestrial ecosystems to temperature and precipitation change: A meta-analysis of experimental manipulation. Global Change Biology, 17(2): 927–942. doi: 10.1111/j.1365-2486.2010.02302.x.CrossRefGoogle Scholar
  51. Xu X, Tian H, Zhang C et al., 2010. Attribution of spatial and temporal variations in terrestrial methane flux over North America. Biogeosciences Discussions, 7(4): 5383–5428. doi: 10.5194/bgd-7-5383-2010.CrossRefGoogle Scholar
  52. Zeng N, Mariotti A, Wetzel P, 2005. Terrestrial mechanisms of interannual CO2 variability. Global Biogeochemical Cycles, 19(1): doi: 10.1029/2004GB0022–3.CrossRefGoogle Scholar
  53. Zhang C, Tian H, Chappelka AH et al., 2007. Impacts of climatic and atmospheric changes on carbon dynamics in the Great Smoky Mountains National Park. Environmental Pollution, 149(3): 336–347. doi: 10.1016/ j.envpol.2007.05-028.CrossRefGoogle Scholar
  54. Zhang C, Tian H, Chen G et al., 2012. Impacts of urbanization on carbon balance in terrestrial ecosystems of the Southern United States. Environmental Pollution, 164: 89–101. doi: 10.1016/j.envpol.2012.01-020.CrossRefGoogle Scholar
  55. Zhang C, Tian H, Wang Y et al., 2010. Predicting response of fuel load to future changes in climate and atmospheric composition in the Southern United States. Forest Ecology and Management, 260(4): 556–564. doi: 10.1016/j.foreco.2010.05-012.CrossRefGoogle Scholar
  56. Zhao M, Running SW, 2010. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329(5994): 940–943. doi: 10.1126/science.1192-66.CrossRefGoogle Scholar
  57. Zscheischler J, Michalak AM, Schwalm C et al., 2014. Impact of large-scale climate extremes on biospheric carbon fluxes: An intercomparison based on MsTMIP data. Global Biogeochemical Cycles, 28(6): 585–600.Google Scholar

Copyright information

© Institute of Geographic Science and Natural Resources Research (IGSNRR), Science China Press and Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • Shufen Pan
    • 1
    • 2
    Email author
  • Hanqin Tian
    • 1
  • Shree R. S. Dangal
    • 1
  • Zhiyun Ouyang
    • 1
  • Chaoqun Lu
    • 1
  • Jia Yang
    • 1
  • Bo Tao
    • 1
  • Wei Ren
    • 1
  • Kamaljit Banger
    • 1
  • Qichun Yang
    • 1
  • Bowen Zhang
    • 1
  1. 1.International Center for Climate and Global Change Research, School of Forestry and Wildlife SciencesAuburn UniversityAuburnUSA
  2. 2.State Key Laboratory of Urban and Regional EcologyResearch Center for Eco-Environmental Sciences, CASBeijingChina

Personalised recommendations