Advertisement

Journal of Geographical Sciences

, Volume 24, Issue 1, pp 76–92 | Cite as

Human-driven topographic effects on the distribution of forest in a flat, lowland agricultural region

  • Mette V. Odgaard
  • Peder K. Bøcher
  • Tommy Dalgaard
  • Jesper E. Moeslund
  • Jens-Christian Svenning
Article

Abstract

Complex topography buffers forests against deforestation in mountainous regions. However, it is unknown if terrain also shapes forest distribution in lowlands where human impacts are likely to be less constrained by terrain. In such regions, if important at all, topographic effects will depend on cultural-historical factors and thus be human-driven (anthropogenic) rather than natural, except in regions where the general climate or extreme soils limit the occurrence of forests. We used spatial regression modeling to assess the extent to which topographic factors explain forest distribution (presence-absence at a 48×48 m resolution) in a lowland agricultural region (Denmark, 43,075 km2) at regional and landscape scales (whole study area and 10×10 km grid cells, respectively), how landscape-scale forest-topography relationships vary geographically, and which potential drivers (topographic heterogeneity, forest cover, clay content, coastal/inland location) determine this geographic heterogeneity. Given a moist temperate climate and non-extreme soils all landscapes in Denmark would naturally be largely forest covered, and any topographic relationships will be totally or primarily human-driven. At regional scale, topographic predictors explained only 5% of the distribution of forest. In contrast, the explanatory power of topography varied from 0%–61% at landscape scale, with clear geographic patterning. Explanatory power of topography at landscape scale was moderately dependent on the potential drivers, with topographic control being strongest in areas with high topographic heterogeneity and little forest cover. However, these conditioning effects were themselves geographically variable. Our findings show that topography by shaping human land-use can affect forest distribution even in flat, lowland regions, but especially via localized, geographically variable effects.

Keywords

Europe forest cover geographically weighted regression human impact landscape development topography vegetation distribution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Acácio V, Holmgren M, Moreira F et al., 2010. Oak persistence in Mediterranean landscapes: The combined role of management, topography, and wildfires. Ecology and Society, 15: 1–17.Google Scholar
  2. Akaike H, 1973. Information theory and an extension of the maximum likelihood principle. In: Petrov B N, Csáki F (eds). 2nd International Symposium on Information Theory. Budapest, p.267.Google Scholar
  3. Bellemare J, Motzkin G, Foster D R, 2002. Legacies of the agricultural past in the forested present: An assessment of historical land-use effects on rich mesic forests. Journal of Biogeography, 29: 1401–1420.CrossRefGoogle Scholar
  4. Bonan G B, 2008. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science, 320: 1444–1449.CrossRefGoogle Scholar
  5. Brunsdon C, McClatchey J, Unwin D J, 2001. Spatial variations in the average rainfall-altitude relationship in Great Britain: An approach using geographically weighted regression. International Journal of Climatology, 21: 455–466.CrossRefGoogle Scholar
  6. Burnham K P, Anderson D R, 2002. Information and likelihood theory: A basis for model selection and inference. In: Burnham K P, Anderson D R (eds). Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach. New York, p.49.Google Scholar
  7. Cruz Ruggiero P G, Batalha M A, Pivello V R et al., 2002. Soil-vegetation relationships in cerrado (Brazilian savanna) and semideciduous forest, Southeastern Brazil. Plant Ecology, 160: 1–16.CrossRefGoogle Scholar
  8. Dalgaard T, Guul-Simonsen F, Liboriussen T, 2008. Landbruget i romantikken. In: Høiris O, Ledet T (eds). Romantikkens verden. Natur, menneske, samfund, kunst og kultur. Aahus, Denmark, p.87.Google Scholar
  9. Danish Ministry of the Environment, National Survey and Cadastre, 2010. (http://www.kms.dk/Emner/Landkor-(http://www.kms.dk/Emner/Landkortogtopografi/TopografiskeDatabaser/).
  10. Dessie G, Christiansson C, 2008. Forest decline and its causes in the south-central rift valley of Ethiopia: Human impact over a one hundred year perspective. AMBIO: A Journal of the Human Environment, 37: 263–271. ESRI, 2010. ArcGIS ver. 10. USA.CrossRefGoogle Scholar
  11. Ewel J, 1999. Natural systems as models for the design of sustainable systems of land use. Agroforestry Systems, 45: 1–21.CrossRefGoogle Scholar
  12. Faraway J J, 2006. Binomial data. In: Carlin B P, Chatfield C, Tanner M et al. (eds). Extending the Linear Model with R. Generalized Linear, Mixed Effects and Nonparametric Regression Models. New York, p.25.Google Scholar
  13. Flinn K M, Vellend M, Marks P L, 2005. Environmental causes and consequences of forest clearance and agricultural abandonment in central New York, USA. Journal of Biogeography, 32: 439–452.CrossRefGoogle Scholar
  14. Fotheringham A S, Brunsdon C, Charlton M, 2001. Scale issues and geographically weighted regression. In: Nicholas J Tate, Peter M Atkinson (eds). Modelling Scale in Geographical Information Science. New York, USA, p.123.Google Scholar
  15. Fritzbøger B, 1994. Da landet blev skov. In: Kulturskoven. Bo Fritzbøger(ed). Nordisk Forlag A S. Copenhagen, p.24.Google Scholar
  16. Fritzbøger B, Odgaard B, 2010. Skovenes historie. In: Møller P F (ed.). Naturen i Danmark, skovene (The nature in Denmark, the forest). Denmark, p.55.Google Scholar
  17. Gellrich M, Zimmermann N E, 2007. Investigating the regional-scale pattern of agricultural land abandonment in the Swiss mountains: A spatial statistical modelling approach. Landscape and Urban Planning, 79: 65–76.CrossRefGoogle Scholar
  18. Greve M H, Greve M B, Bøcher P B et al., 2007. Generating a Danish raster-based topsoil property map combining choropleth maps and point information. Danish Journal of Geography, 107: 1–12.CrossRefGoogle Scholar
  19. Greve M, Lykke A M, Blach-Overgaard A et al., 2011. Environmental and anthropogenic determinants of vegetation distribution across Africa. Global Ecology and Biogeography, 20: 661–674.CrossRefGoogle Scholar
  20. Hemmavanh C, Ye Y, Yoshida A, 2010. Forest land use change at Trans-Boundary Laos-China Biodiversity Conservation Area. Journal of Geographical Sciences, 20(6): 889–898.CrossRefGoogle Scholar
  21. Hernández H R, Robledo M A, Rivera J R A et al., 2008. Spatial configuration of land-use/land-cover in the Pujal-Coy project area, Huasteca Potosina region, Mexico. AMBIO: A Journal of the Human Environment, 37: 381–389.CrossRefGoogle Scholar
  22. Hofera G, Bunceb R G H, Edwardsc P J et al., 2011. Use of topographic variability for assessing plant diversity in agricultural landscapes. Agriculture, Ecosystems and Environment, 142: 144–148.CrossRefGoogle Scholar
  23. Holm P, 2000. Kysternes erhverv og bebyggelse. In: Møller P G, Holm P, Rasmussen L (eds). Aktører i landskabet. Odense University Studies in History and Social Science vol. 232. Denmark, p.179.Google Scholar
  24. Hottola J, Siitonen J, 2008. Significance of woodland key habitats for polypore diversity and red-listed species in boreal forests. Biodiversity Conservation, 17: 2559–2577.CrossRefGoogle Scholar
  25. Katz D S W, Lovett G M, Canham C D et al., 2010. Legacies of land use history diminish over 22 years in a forest in southeastern New York. The Journal of the Torrey Botanical Society, 137: 236–251.CrossRefGoogle Scholar
  26. Kreft H, Jetz W, 2007. Global patterns and determinants of vascular plant diversity. Proceedings of the National Academy of Science, 104: 5925–5930.CrossRefGoogle Scholar
  27. Kronvang B, Andersen H E, Børgesen C et al., 2008. Effects of policy measures implemented in Denmark on nitrogen pollution of the aquatic environment. Environmental Science & Policy, 11: 144–152.CrossRefGoogle Scholar
  28. Larson D W, Matthes U, Gerrath J A et al., 2000. Evidence for the widespread occurrence of ancient forests on cliffs. Journal of Biogeography, 27: 319–331.CrossRefGoogle Scholar
  29. Liang G, Ding S, 2006. Driving factors of forest landscape change in Yiluo River basin. Journal of Geographical Sciences, 16(4): 415–422.CrossRefGoogle Scholar
  30. Meddens A J H, Hudak A T, Evans J S et al., 2008. Characterizing forest fragments in boreal, temperate, and tropical ecosystems. AMBIO: A Journal of the Human Environment, 37: 569–576.CrossRefGoogle Scholar
  31. Menard S, 2000. Coefficients of determination for multiple logistic regression analysis. The American Statistician, 54: 17–24.Google Scholar
  32. Messerli B, Grosjean M, Hofer T et al., 2000. From nature-dominated to human-dominated environmental changes. Quaternary Science Reviews, 19: 459–479.CrossRefGoogle Scholar
  33. Nogués-Bravo D, Ajaújo M B, Romdal T et al., 2008. Scale effects and human impact on the elevational species richness gradients. Nature, 453: 216–219.CrossRefGoogle Scholar
  34. Odgaard B, Nielsen A B, 2009. Udviklingen i arealdækning i perioden 0–1850. Pollen og landskabshistorie. In: Bent Odgaard, Jørgen Rydén Rømer (eds.). Danske landbrugslandskaber gennem 2000 år. Fra digevoldinger til støtteordninger. Denmark, p.41.Google Scholar
  35. Odgaard B V, Rasmussen P, 2000. Origin and temporal development of macro-scale vegetation patterns in the cultural landscape of Denmark. Journal of Ecology, 88: 733–748.CrossRefGoogle Scholar
  36. Pineda Jaimes N B, Bosque Sendra J, Gómez Delgado M et al., 2010. Exploring the driving forces behind deforestation in the state of Mexico (Mexico) using geographically weighted regression. Applied Geography, 30: 576–591.CrossRefGoogle Scholar
  37. Prentice C, Cramer W, Harrison S P et al., 1992. A global biome model based on plant physiology and dominance, soil properties and climate. Journal of Biogeography, 19: 117–134.CrossRefGoogle Scholar
  38. R Development Core Team, 2010. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0. (http://www.r-project.org/).Google Scholar
  39. Rangel T F, Diniz-Filho J A F, Bini L M, 2010. SAM: A comprehensive application for spatial analysis in macroecology. Ecography, 33: 46–50.CrossRefGoogle Scholar
  40. Reger B, Otte A, Waldhardt R, 2007. Identifying patterns of land-cover change and their physical attributes in a marginal European landscape. Landscape and Urban Planning, 81: 104–113.CrossRefGoogle Scholar
  41. Rouget M, Richardson D M, Cowling R M, 2003. The current configuration of protected areas in the Cape Floristic Region, South Africa: Reservation bias and representation of biodiversity patterns and processes. Biological Conservation, 112: 129–145.CrossRefGoogle Scholar
  42. Rygnestad H, Jensen J D, Dalgaard T, 2002. Integrated economic and spatial analyses of afforestration strategies in Denmark. Danish Journal of Geography, 3: 41–48.Google Scholar
  43. Scott J M, Davis F W, McGhie R G et al., 2001. Nature reserves: Do they capture the full range of America’s biological diversity? Ecological Applications, 11: 999–1007.CrossRefGoogle Scholar
  44. Shan J, Toth C K, 2009. Topographic laser ranging and scanning. USA.Google Scholar
  45. Sklenicka P, Salek M, 2008. Ownership and soil quality as sources of agricultural land fragmentation in highly fragmented ownership patterns. Landscape Ecology, 23: 299–311.CrossRefGoogle Scholar
  46. Svenning J, 2002. A review of natural vegetation openness in north-western Europe. Biological Conservation, 104: 133–148.CrossRefGoogle Scholar
  47. Taillefumier F, Piégay H, 2003. Contemporary land use changes in prealpine Mediterranean mountains: A multivariate GIS-based approach applied to two municipalities in the Southern French Prealps. Catena, 51: 267–296.CrossRefGoogle Scholar
  48. The Danish Society for Nature Conservation. 2012.Google Scholar
  49. Troeh F R, Thompson L M, 2005. Physical properties of soils. In: Frederick R Troeh, Louis M Thompson (eds.). Soils and Soil Fertility. USA, p.37.Google Scholar
  50. Vitousek P M, Mooney H A, Lubchenco J et al., 1997. Human domination of earth’s ecosystems. Science, 277: 494–499.CrossRefGoogle Scholar
  51. Wilson J P, Gallant J C, 2000. Secondary topographic attributes. In: John P Wilson, John C Gallant (eds.). Terrain Analysis, Principles and Applications. USA, p.87.Google Scholar

Copyright information

© Science Press and Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • Mette V. Odgaard
    • 1
    • 2
  • Peder K. Bøcher
    • 2
  • Tommy Dalgaard
    • 1
  • Jesper E. Moeslund
    • 1
    • 2
    • 3
  • Jens-Christian Svenning
    • 2
  1. 1.Department of AgroecologyAarhus UniversityTjeleDenmark
  2. 2.Ecoinformatics & Biodiversity Group, Department of BioscienceAarhus UniversityAarhus CDenmark
  3. 3.Department of Computer ScienceAarhus UniversityAarhus NDenmark

Personalised recommendations