Skip to main content
Log in

Site water salinity effect on the hydro-mechanical behavior of compacted GMZ bentonite with technological void

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The hydromechanical behavior of compacted bentonite in near-field salinity groundwater environment is of great importance for achieving the low-permeability sealing capacity in deep geological repositories. Within this context, swelling pressure and hydraulic conductivity of compacted bentonites with technological voids were evaluated under simulated site water salinity conditions. Water content, dry density and pore size distribution were measured after hydration. Results showed that the swelling pressure shows a trend of rapid rise and reach the peak value, then drop sharply and stabilized. The rapid decrease in the hydraulic conductivity for all salinity is the salient features, and then, it reduces slowly. The above evolution behavior is dominated by the swelling mechanisms and the self-sealing of technological void under different salinity conditions. Adequate water and space provided by technological void lead to gradient evolution of geotechnical properties, such as water content, dry density and pore size distribution. The density increase mechanism derived from salinity fails to compete with the density decrease mechanism derived from sufficient space sourced from technological void. Therefore, the dry density at the external sampling site decreases with increasing salinity. At high salinity, the compressed diffuse double layer not only increases the inter-aggregate pores but also widens the water flow channels. As a result, hydraulic conductivity increases with increasing salinity. Considering the influence from groundwater salinity, it is necessary to improve basic properties and technological void dimensions of bentonite blocks for the safety of long-term operation of deep geological repository.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Alzamel M, Fall M, Haruna S (2022) Swelling ability and behaviour of bentonite-based materials for deep repository engineered barrier systems: Influence of physical, chemical and thermal factors. J Rock Mech Geotech Eng 14(3):689–702. https://doi.org/10.1016/j.jrmge.2021.11.009

    Article  Google Scholar 

  2. Arcos D, Bruno J, Karnland O (2003) Geochemical model of the granite–bentonite–groundwater interaction at Äspö HRL (LOT experiment). Appl Clay Sci 23(1):219–228. https://doi.org/10.1016/S0169-1317(03)00106-6

    Article  Google Scholar 

  3. Bao C, Jiaxing G, Huixin Z (2016) Alteration of compacted GMZ bentonite by infiltration of alkaline solution. Clay Miner 51(2):237–247. https://doi.org/10.1180/claymin.2016.051.2.10

    Article  Google Scholar 

  4. Bian X, Cui Y-J, Li X-Z (2019) Voids effect on the swelling behaviour of compacted bentonite. Géotechnique 69(7):593–605. https://doi.org/10.1680/jgeot.17.P.283

    Article  Google Scholar 

  5. Chen Y-G, Cai Y-Q, Pan K et al (2022) Influence of dry density and water salinity on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite–sand mixtures. Acta Geotech 17(5):1879–1896. https://doi.org/10.1007/s11440-021-01305-7

    Article  Google Scholar 

  6. Chen Y-G, Dong X-X, Zhang X-D et al (2018) Combined thermal and saline effects on the swelling pressure of densely compacted GMZ bentonite. Appl Clay Sci 166:318–326. https://doi.org/10.1016/j.clay.2018.10.001

    Article  Google Scholar 

  7. Chen W-C, Huang W-H (2013) Effect of groundwater chemistry on the swelling behavior of a Ca-bentonite for deep geological repository. Phys Chem Earth Parts A/B/C 65:42–49. https://doi.org/10.1016/j.pce.2013.05.012

    Article  Google Scholar 

  8. Cui L-Y, Ye W-M, Wang Q et al (2021) Influence of cyclic thermal processes on gas migration in saturated GMZ01 bentonite. J Nat Gas Sci Eng 88:103872. https://doi.org/10.1016/j.jngse.2021.103872

    Article  Google Scholar 

  9. Dong C-X, Duan Z, Li R et al (2023) Impact liquefaction mechanism of sandy silt with a change in impact energy. Q J Eng Geol Hydrogeol 56(3):qjegh2022-122. https://doi.org/10.1144/qjegh2022-122

    Article  Google Scholar 

  10. Dong M, Li J-S, Lang L et al (2023) Recycling thermal modified phosphogypsum in calcium sulfoaluminate cement: evolution of engineering properties and micro-mechanism. Constr Build Mater 373:130823. https://doi.org/10.1016/j.conbuildmat.2023.130823

    Article  Google Scholar 

  11. Dong Y, Wang L, Wei C (2022) Characterization of liquid–vapor interfaces in pores during evaporation. Water Resour Res 58(9):e2021WR031908. https://doi.org/10.1029/2021WR031908

  12. El-Showk S (2022) Final resting place. Science 375(6583):806–810. https://doi.org/10.1126/science.ada1574

    Article  Google Scholar 

  13. Gens A, Sánchez M, Guimarães LDN et al (2009) A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation. Géotechnique 59(4):377–399. https://doi.org/10.1680/geot.2009.59.4.377

    Article  Google Scholar 

  14. He Y, Ye W-M, Chen Y-G, Cui Y-J (2019) Effects of K+ solutions on swelling behavior of compacted GMZ bentonite. Eng Geol 249:241–248. https://doi.org/10.1016/j.enggeo.2018.12.020

    Article  Google Scholar 

  15. Hu WL, Cheng WC, Wang YH et al (2023) Applying a nanocomposite hydrogel electrode to mitigate electrochemical polarization and focusing effect in electrokinetic remediation of a Cu- and Pb-contaminated loess. Environ Pollut 333:122039. https://doi.org/10.1016/j.envpol.2023.122039

    Article  Google Scholar 

  16. Huang X, Li J-S, Jsiang W et al (2022) Recycling of phosphogypsum and red mud in low carbon and green cementitious materials for vertical barrier. Sci Total Environ 838:155925. https://doi.org/10.1016/j.scitotenv.2022.155925

    Article  Google Scholar 

  17. Huang X, Li J-S, Xue Q et al (2021) Use of self-hardening slurry for trench cutoff wall: a review. Constr Build Mater 286:122959. https://doi.org/10.1016/j.conbuildmat.2021.122959

    Article  Google Scholar 

  18. Idiart A, Laviña M, Cochepin B, Pasteau A (2020) Hydro-chemo-mechanical modelling of long-term evolution of bentonite swelling. Appl Clay Sci 195:105717. https://doi.org/10.1016/j.clay.2020.105717

    Article  Google Scholar 

  19. Jia L-Y, Chen Y-G, Ye W-M, Cui Y-J (2019) Effects of a simulated gap on anisotropic swelling pressure of compacted GMZ bentonite. Eng Geol 248:155–163. https://doi.org/10.1016/j.enggeo.2018.11.018

    Article  Google Scholar 

  20. Kerr RA (2011) Light at the end of the radwaste disposal tunnel could be real. Science 333(6039):150–152. https://doi.org/10.1126/science.333.6039.150

    Article  Google Scholar 

  21. Komine H (2010) Predicting hydraulic conductivity of sand–bentonite mixture backfill before and after swelling deformation for underground disposal of radioactive wastes. Eng Geol 114(3):123–134. https://doi.org/10.1016/j.enggeo.2010.04.009

    Article  Google Scholar 

  22. Koohmishi M, Palassi M (2018) Effect of gradation of aggregate and size of fouling materials on hydraulic conductivity of sand-fouled railway ballast. Constr Build Mater 167:514–523. https://doi.org/10.1016/j.conbuildmat.2018.02.040

    Article  Google Scholar 

  23. Lan Tg, Xu L, Lu Sf (2023) Experimental study on the water retention behavior of intact loess under mechanical wetting and hydraulic wetting. Acta Geotechnica 18(2):1125–1134. https://doi.org/10.1007/s11440-022-01593-7

    Article  Google Scholar 

  24. Lang LZ, Baille W, Tripathy S, Schanz T (2018) Experimental study on the influence of preliminary desiccation on the swelling pressure and hydraulic conductivity of compacted bentonite. Clay Miner 53(4):733–744. https://doi.org/10.1180/clm.2018.53

    Article  Google Scholar 

  25. Lang L, Chen B, Li J (2023) High-efficiency stabilization of dredged sediment using nano-modified and chemical-activated binary cement. J Rock Mech Geotech Eng. https://doi.org/10.1016/j.jrmge.2022.12.007

    Article  Google Scholar 

  26. Li J-S, Chen X, Lang L et al (2023) Evaluation of natural and artificial fiber reinforcements on the mechanical properties of cement-stabilized dredged sediment. Soils Found 63(3):101319. https://doi.org/10.1016/j.sandf.2023.101319

    Article  Google Scholar 

  27. Li K-P, Chen Y-G, Ye W-M, Wang Q (2023) Modelling the evolution of dual-pore structure for compacted clays along hydro-mechanical paths. Comput Geotech. https://doi.org/10.1016/j.compgeo.2023.105308

    Article  Google Scholar 

  28. Li KQ, Yin ZY, Zhang N et al (2024) A PINN-based modelling approach for hydromechanical behaviour of unsaturated expansive soils. Comput Geotech 169:106174. https://doi.org/10.1016/j.compgeo.2024.106174

    Article  Google Scholar 

  29. Liu X, Cai G, Liu L et al (2019) Thermo-hydro-mechanical properties of bentonite-sand-graphite-polypropylene fiber mixtures as buffer materials for a high-level radioactive waste repository. Int J Heat Mass Transf 141:981–994. https://doi.org/10.1016/j.ijheatmasstransfer.2019.07.015

    Article  Google Scholar 

  30. Liu L-N, Chen Y-G, Ye W-M et al (2018) Effects of hyperalkaline solutions on the swelling pressure of compacted Gaomiaozi (GMZ) bentonite from the viewpoint of Na+ cations and OH anions. Appl Clay Sci 161:334–342. https://doi.org/10.1016/j.clay.2018.04.023

    Article  Google Scholar 

  31. Liu Z-R, Ye W-M, Cui Y-J et al (2022) Temperature effects on water retention behaviour and structural evolution of GMZ bentonite pellet mixtures. Appl Clay Sci. https://doi.org/10.1016/j.clay.2022.106492

    Article  Google Scholar 

  32. Liu Z-R, Ye W-M, Cui Y-J et al (2022) Temperature effects on water retention behaviour and structural evolution of GMZ bentonite pellet mixtures. Appl Clay Sci 222:106492. https://doi.org/10.1016/j.clay.2022.106492

    Article  Google Scholar 

  33. Liu Z-R, Ye W-M, Cui Y-J et al (2022) Water infiltration and swelling pressure development in GMZ bentonite pellet mixtures with consideration of temperature effects. Eng Geol 305:106718. https://doi.org/10.1016/j.enggeo.2022.106718

    Article  Google Scholar 

  34. Lloret A, Villar MV, Sánchez M et al (2003) Mechanical behaviour of heavily compacted bentonite under high suction changes. Géotechnique 53(1):27–40. https://doi.org/10.1680/geot.2003.53.1.27

    Article  Google Scholar 

  35. Lu P-H, He Y, Ye W-M et al (2022) Experimental investigations and microscopic analyses of chemical effects and dry density on the swelling behavior of compacted bentonite. Bull Eng Geol Env 81(6):243. https://doi.org/10.1007/s10064-022-02736-6

    Article  Google Scholar 

  36. Ma X-Y, Kang X, Su C-X et al (2023) Effects of water chemistry on microfabric and micromechanical properties evolution of coastal sediment: a centrifugal model study. Sci Total Environ 866:161343. https://doi.org/10.1016/j.scitotenv.2022.161343

    Article  Google Scholar 

  37. Madsen FT, Müller-Vonmoos M (1989) The swelling behaviour of clays. Appl Clay Sci 4(2):143–156. https://doi.org/10.1016/0169-1317(89)90005-7

    Article  Google Scholar 

  38. Manca D, Ferrari A, Laloui L (2016) Fabric evolution and the related swelling behaviour of a sand/bentonite mixture upon hydro-chemo-mechanical loadings. Géotechnique 66(1):41–57. https://doi.org/10.1680/jgeot.15.P.073

    Article  Google Scholar 

  39. Meng Y, Wang Q, Su W et al (2022) Effect of sample thickness on the self-sealing and hydration cracking of compacted bentonite. Eng Geol 307:66. https://doi.org/10.1016/j.enggeo.2022.106792

    Article  Google Scholar 

  40. Meng Y, Wang Q, Su W et al (2023) On the evolution of hydration cracks of compacted bentonite under different boundary conditions. Constr Build Mater 407:133387. https://doi.org/10.1016/j.conbuildmat.2023.133387

    Article  Google Scholar 

  41. Mishra AK, Ohtsubo M, LI L Y, et al (2009) Effect of salt of various concentrations on liquid limit, and hydraulic conductivity of different soil-bentonite mixtures. Environ Geol 57(5):1145–1153. https://doi.org/10.1007/s00254-008-1411-0

    Article  Google Scholar 

  42. Ng S, Plank J (2012) Interaction mechanisms between Na montmorillonite clay and MPEG-based polycarboxylate superplasticizers. Cem Concr Res 42(6):847–854. https://doi.org/10.1016/j.cemconres.2012.03.005

    Article  Google Scholar 

  43. Reddy KR, El-Zein A, Airey DW et al (2020) Self-healing polymers: synthesis methods and applications. Nano-Struct Nano-Obj 23:100500. https://doi.org/10.1016/j.nanoso.2020.100500

    Article  Google Scholar 

  44. Robinet J-C, Tyri D, Djeran-Maigre I (2021) Hydro-mechanical response of crushed argillite and bentonite mixtures as sealing material. Eng Geol 288:106140. https://doi.org/10.1016/j.enggeo.2021.106140

    Article  Google Scholar 

  45. Romero E, Vecchia GD, Jommi C (2011) An insight into the water retention properties of compacted clayey soils. Géotechnique 61(4):313–328. https://doi.org/10.1680/geot.2011.61.4.313

    Article  Google Scholar 

  46. Rosa EA, Tuler SP, Fischhoff B et al (2010) Nuclear waste: knowledge waste? Science 329(5993):762–763. https://doi.org/10.1126/science.1193205

    Article  Google Scholar 

  47. Ruan K, Komine H, Ito D et al (2022) Hydraulic conductivity and X-ray diffraction tests of unsaturated bentonites with a multi-ring and their predictions by pores distributions. Eng Geol 306:106738. https://doi.org/10.1016/j.enggeo.2022.106738

    Article  Google Scholar 

  48. Segad M, Jönsson B, Akesson T, Cabane B (2010) Ca/Na montmorillonite: structure, forces and swelling properties. Langmuir 26(8):5782–5790. https://doi.org/10.1021/la9036293

    Article  Google Scholar 

  49. Shehata A, Fall M, Detellier C, Alzamel M (2021) Effect of groundwater chemistry and temperature on swelling and microstructural properties of sand–bentonite for barriers of radioactive waste repositories. Bull Eng Geol Env 80(2):1857–1873. https://doi.org/10.1007/s10064-020-02020-5

    Article  Google Scholar 

  50. Stroes-Gascoyne S (2010) Microbial occurrence in bentonite-based buffer, backfill and sealing materials from large-scale experiments at AECL’s Underground Research Laboratory. Appl Clay Sci 47(1):36–42. https://doi.org/10.1016/j.clay.2008.07.022

    Article  Google Scholar 

  51. Su W, Wang Q, Luo X-L et al (2023) Laboratory investigation on the membrane behaviour of highly compacted GMZ bentonite under isothermal conditions. Acta Geotech. https://doi.org/10.1007/s11440-023-01854-z

    Article  Google Scholar 

  52. Su W, Wang Q, Ye W et al (2021) Swelling pressure of compacted MX80 bentonite/sand mixture prepared by different methods. Soils Found 61(4):1142–1150. https://doi.org/10.1016/j.sandf.2021.06.005

    Article  Google Scholar 

  53. Sun Z, Chen Y-G, Cui Y-J et al (2019) Effect of synthetic Beishan site water and cement solutions on the mineralogy and microstructure of compacted Gaomiaozi(GMZ) bentonite. Soils Found 59(6):2056–2069. https://doi.org/10.1016/j.sandf.2019.11.006

    Article  Google Scholar 

  54. Sun H, Mašín D, Najser J et al (2019) Bentonite microstructure and saturation evolution in wetting–drying cycles evaluated using ESEM. MIP WRC Meas Géotech 69(8):713–726. https://doi.org/10.1680/jgeot.17.P.253

    Article  Google Scholar 

  55. Sun DA, Zhang J, Zhang J, Zhang L (2013) Swelling characteristics of GMZ bentonite and its mixtures with sand. Appl Clay Sci 83–84:224–230. https://doi.org/10.1016/j.clay.2013.08.042

    Article  Google Scholar 

  56. Tsang C-F, Neretnieks I, Tsang Y (2015) Hydrologic issues associated with nuclear waste repositories. Water Resour Res 51(9):6923–6972. https://doi.org/10.1002/2015WR017641

    Article  Google Scholar 

  57. Villar MV, Lloret A (2004) Influence of temperature on the hydro-mechanical behaviour of a compacted bentonite. Appl Clay Sci 26(1–4):337–350. https://doi.org/10.1016/j.clay.2003.12.026

    Article  Google Scholar 

  58. Wan AWL, Gray MN, Graham J (1995) On the relations of suction, moisture content and soil structure in compacted clays. In: Proceedings of the 1st international conference on unsaturated soils, Paris, France

  59. Wang H (2022) Pore water density in a saturated bentonite. Géotechnique. https://doi.org/10.1680/jgeot.22.00247

    Article  Google Scholar 

  60. Wang Q, Cui Y-J, Tang AM et al (2013) Hydraulic conductivity and microstructure changes of compacted bentonite/sand mixture during hydration. Eng Geol 164:67–76. https://doi.org/10.1016/j.enggeo.2013.06.013

    Article  Google Scholar 

  61. Wang Q, Cui Y-J, Tang AM et al (2014) Long-term effect of water chemistry on the swelling pressure of a bentonite-based material. Appl Clay Sci 87:157–162. https://doi.org/10.1016/j.clay.2013.10.025

    Article  Google Scholar 

  62. Wang H, Ito D, Shirakawabe T et al (2022) On swelling behaviours of a bentonite under different water contents. Géotechnique. https://doi.org/10.1680/jgeot.21.00312

    Article  Google Scholar 

  63. Wang H, Komine H, Gotoh T (2022) A swelling pressure cell for X-ray diffraction test. Géotechnique 72(8):675–686. https://doi.org/10.1680/jgeot.20.00005

    Article  Google Scholar 

  64. Wang Q, Meng Y, Su W et al (2021) Cracking and sealing behavior of the compacted bentonite upon technological voids filling. Eng Geol 292:106244. https://doi.org/10.1016/j.enggeo.2021.106244

    Article  Google Scholar 

  65. Wang Q, Meng Y, Su W et al (2022) Analyzing of the hydration crack evolution in compacted GMZ bentonite with consideration of technological void ratio. Constr Build Mater 323:126399. https://doi.org/10.1016/j.conbuildmat.2022.126399

    Article  Google Scholar 

  66. Wang Q, Minh Tang A, Cui Y-J et al (2013) The effects of technological voids on the hydro-mechanical behaviour of compacted bentonite–sand mixture. Soils Found 53(2):232–245. https://doi.org/10.1016/j.sandf.2013.02.004

    Article  Google Scholar 

  67. Wang H, Shirakawabe T, Komine H et al (2019) Movement of water in compacted bentonite and its relation with swelling pressure. Can Geotech J 57(6):921–932. https://doi.org/10.1139/cgj-2019-0219

    Article  Google Scholar 

  68. Wang Q, Su W, Cui Y-J et al (2021) Residual lateral stress effect on the swelling pressure measurements of compacted bentonite/claystone mixture. Eng Geol 295:106437. https://doi.org/10.1016/j.enggeo.2021.106437

    Article  Google Scholar 

  69. Wang Q, Xu Y, Su W et al (2023) Enhancement mechanism of remolding on the swelling behavior of expansive stiff clay: from microstructure perspective. Environ Earth Sci. https://doi.org/10.1007/s12665-023-11071-2

    Article  Google Scholar 

  70. Wang Q, Yan X, Dong Y et al (2023) Effect of Beishan groundwater salinity on the self-sealing performance of compacted GMZ bentonite. Environ Earth Sci 82(17):66. https://doi.org/10.1007/s12665-023-11082-z

    Article  Google Scholar 

  71. Wersin P (2003) Geochemical modelling of bentonite porewater in high-level waste repositories. J Contam Hydrol 61(1):405–422. https://doi.org/10.1016/S0169-7722(02)00119-5

    Article  Google Scholar 

  72. Xu P, Qian H, Zhangs Q et al (2022) Response mechanism of permeability change of remolded loess to seepage parameters. J Hydrol 612:128224. https://doi.org/10.1016/j.jhydrol.2022.128224

    Article  Google Scholar 

  73. Xu L, Ye WM, Chen B et al (2016) Experimental investigations on thermo-hydro-mechanical properties of compacted GMZ01 bentonite-sand mixture using as buffer materials. Eng Geol 213:46–54. https://doi.org/10.1016/j.enggeo.2016.08.015

    Article  Google Scholar 

  74. Yan X, Duan Z, Sun Q (2021) Influences of water and salt contents on the thermal conductivity of loess. Environ Earth Sci 80(2):52. https://doi.org/10.1007/s12665-020-09335-2

    Article  Google Scholar 

  75. Ye WM, Zheng ZJ, Chen B et al (2014) Effects of pH and temperature on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Appl Clay Sci 101:192–198. https://doi.org/10.1016/j.clay.2014.08.002

    Article  Google Scholar 

  76. Ye WM, Zhu CM, Chen YG et al (2015) Influence of salt solutions on the swelling behavior of the compacted GMZ01 bentonite. Environ Earth Sci 74(1):793–802. https://doi.org/10.1007/s12665-015-4108-1

    Article  Google Scholar 

  77. Ying Z, Benahmed N, Cui Y-J, Duc M (2022) Determining osmotic suction through electrical conductivity for unsaturated low-plasticity soils. J Rock Mech Geotech Eng 14(6):1946–1955. https://doi.org/10.1016/j.jrmge.2021.12.020

    Article  Google Scholar 

  78. Ying Z, Cui Y-J, Benahmed N, Duc M (2021) Salinity effect on the compaction behaviour, matric suction, stiffness and microstructure of a silty soil. J Rock Mech Geotech Eng 13(4):855–863. https://doi.org/10.1016/j.jrmge.2021.01.002

    Article  Google Scholar 

  79. Ying Z, Cui Y-J, Benahmed N, Duc M (2021) Investigating the salinity effect on water retention property and microstructure changes along water retention curves for lime-treated soil. Constr Build Mater 303:124564. https://doi.org/10.1016/j.conbuildmat.2021.124564

    Article  Google Scholar 

  80. Yoon S, Kim M-J, Chang S, Lee G-J (2022) Evaluation on the buffer temperature by thermal conductivity of gap-filling material in a high-level radioactive waste repository. Nucl Eng Technol 54(11):4005–4012. https://doi.org/10.1016/j.net.2022.06.008

    Article  Google Scholar 

  81. Yu H, Sun DA, Gao Y (2018) Effect of NaCl solution on swelling characteristics of bentonite with different diffuse double layers. Appl Magn Reson 49(7):725–737. https://doi.org/10.1007/s00723-018-1009-y

    Article  Google Scholar 

  82. Yuan S, Liu X, Romero E et al (2020) Discussion on the separation of macropores and micropores in a compacted expansive clay. Géotech Lett 10(3):454–460. https://doi.org/10.1680/jgele.20.00056

    Article  Google Scholar 

  83. Zeng Z, Cui Y-J, Conil N, Talandier J (2020) Analysis of boundary friction effect on the homogenization process of compacted bentonite/claystone mixture with technological voids upon hydration. Acta Geotech 16(2):525–533. https://doi.org/10.1007/s11440-020-01048-x

    Article  Google Scholar 

  84. Zeng Z, Cui Y-J, Conil N, Talandier J (2020) Experimental study on the aeolotropic swelling behaviour of compacted bentonite/claystone mixture with axial/radial technological voids. Eng Geol 278:105846. https://doi.org/10.1016/j.enggeo.2020.105846

    Article  Google Scholar 

  85. Zeng Z, Cui Y-J, Conil N, Talandier J (2022) Effects of technological voids and hydration time on the hydro-mechanical behaviour of compacted bentonite/claystone mixture. Géotechnique 72(1):34–47. https://doi.org/10.1680/jgeot.19.P.220

    Article  Google Scholar 

  86. Zeng Z, Cui Y-J, Zhang F et al (2019) Investigation of swelling pressure of bentonite/claystone mixture in the full range of bentonite fraction. Appl Clay Sci 178:105137. https://doi.org/10.1016/j.clay.2019.105137

    Article  Google Scholar 

  87. Zeng Z, Cui Y-J, Zhang F et al (2020) Effect of technological voids on swelling behaviour of compacted bentonite–claystone mixture. Can Geotech J 57(12):1881–1892. https://doi.org/10.1139/cgj-2019-0339

    Article  Google Scholar 

  88. Zhang F, Wang G, Peng J (2022) Initiation and mobility of recurring loess flowslides on the Heifangtai irrigated terrace in China: insights from hydrogeological conditions and liquefaction criteria. Eng Geol 302:106619. https://doi.org/10.1016/j.enggeo.2022.106619

    Article  Google Scholar 

  89. Zhao NF, Ye WM, Chen B et al (2019) Investigation on unsaturated critical state and Hvorslev surface of compacted bentonite under high suction conditions. Eng Geol 259:105204. https://doi.org/10.1016/j.enggeo.2019.105204

    Article  Google Scholar 

  90. Zhu C-M, Ye W-M, Chen Y-G et al (2013) Influence of salt solutions on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite. Eng Geol 166:74–80. https://doi.org/10.1016/j.enggeo.2013.09.001

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the National Natural Science Foundation of China (42172298, 42002289, 41907231), the National Key Research and Development Program of China (2019YFC1509900) and the Fundamental Research Funds for the Central Universities (22120210039) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

Qiong Wang was involved in conceptualization, methodology, validation, resources, writing—reviewing and editing, and funding acquisition. Xusheng Yan was responsible for software, validation, investigation, formal analysis, data curation, writing—original draft and visualization. Wei Su contributed to validation and writing—reviewing and editing. Weimin Ye took part in supervision and funding acquisition. Fengshou Zhang participated in writing—reviewing and editing, and supervision.

Corresponding author

Correspondence to Qiong Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Yan, X., Su, W. et al. Site water salinity effect on the hydro-mechanical behavior of compacted GMZ bentonite with technological void. Acta Geotech. (2024). https://doi.org/10.1007/s11440-024-02338-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-024-02338-4

Keywords

Navigation