Skip to main content
Log in

Numerical modeling of self-sealing in fractured clayey materials

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The fractures network generated during the excavation of underground research facilities can induce stress redistribution and alteration of flow and transport properties, becoming preferential paths for releasing radionuclides into the host rock. Nevertheless, in the long term, the fracture can be sealed through the resaturation of water coming from the rock as a function of its self-sealing potential. Despite the large number of experimental studies that have proven the self-sealing capacity of clay rocks, very few attempts have been made to describe and predict the phenomenon numerically. This may be due to the difficulty of measuring the initial hydro-mechanical conditions. Besides, samples artificially fractured in the laboratory can be disturbed by the preparation process itself, which can alter the hydro-mechanical state. This paper addresses that issue by bridging the gap between experiments and numerical modeling. Representative experimental tests performed on Callovo–Oxfordian Claystone (COx) are used to offer a hydro-mechanical fracture law taking into account the self-sealing capacity of the material. Implementing such a model in a finite element code allows its validation through comparison with laboratory tests. Furthermore, the role of the initial fracture size and the evolution of water permeability during the wetting/drying process is investigated. Due to its transmissivity, injected water can penetrate the rock, initially reaching the damaged zone around the fracture before spreading through the entire sample. This progression is accounted in the constitutive equation and represented numerically. Nevertheless, a larger initial crack leads to reduced recovery rates. These results match the experiments, offering a valuable perspective in the modeling of self-sealing in in situ conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Armand G, Conil N, Talandier J, Seyedi DM (2017) Fundamental aspects of the hydromechanical behaviour of Callovo–Oxfordian claystone: from experimental studies to model calibration and validation. Comput Geotech 85:277–286. https://doi.org/10.1016/j.compgeo.2016.06.003

    Article  Google Scholar 

  2. Armand G, Leveau F, Nussbaum C, de La Vaissière R, Noiret A, Jaeggi D, Landrein P, Righini-Waz C (2013) Geometry and properties of the excavation-induced fractures at the Meuse/haute-Marne URL drifts. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-012-0339-6

    Article  Google Scholar 

  3. Bandis S, Lumsden A, Barton N (1983) Fundamentals of rock joint deformation. Int J Rock Mech Min Sci Geomech Abstr. https://doi.org/10.1016/0148-9062(83)90595-8

    Article  Google Scholar 

  4. Bart M, Shao J, Lydzba D, Haji-Sotoudeh M (2004) Coupled hydromechanical modeling of rock fractures under normal stress. Can Geotech J 41:686–697. https://doi.org/10.1139/t04-018

    Article  Google Scholar 

  5. Bernier F, Li XL, Bastiaens W, Ortiz L, Van Geet M, Wouters L (2007) SELFRAC: fractures and self-healing within the excavation disturbed zone in clays. Final report. EURIDICE Rep

  6. Bock H, Dehandschutter B, Martin CD, Mazurek M, de Haller A, Skoczylas F, Davy C (2010) Self-sealing of Fractures in Argillaceous Formations in the Context of Geological Disposal of Radioactive Waste. NEA

  7. Cerfontaine B, Dieudonné A-C, Radu J-P, Collin F, Charlier R (2015) 3D zero-thickness coupled interface finite element: formulation and application. Comput Geotech 69:124–140. https://doi.org/10.1016/j.compgeo.2015.04.016

    Article  Google Scholar 

  8. Charlier R (1987) Approche unifiée de quelques problèmes non linéaires de mécanique des milieux continus par la méthode des éléments finis: (grandes déformations des métaux et des sols, contact unilatéral de solides, conduction thermique et écoulements en milieu poreux)

  9. Charlier R, Cescotto S (1988) Modélisation du phénomène de contact unilatéral avec frottement dans un contexte de grandes déformations. J Mécanique Théorique Appliquée 7

  10. Charlier R, Collin F, Pardoen B, Talandier J, Radu J-P, Gerard P (2013) An unsaturated hydro-mechanical modelling of two in-situ experiments in Callovo–Oxfordian argillite. Eng Geol 165:46–63. https://doi.org/10.1016/j.enggeo.2013.05.021

    Article  Google Scholar 

  11. Collin F (2003) Couplages thermo-hydro-mécaniques dans les sols et les roches tendres partiellement saturés

  12. Conil N, Talandier J, Djizanne H, de La Vaissière R, Righini-Waz C, Auvray C, Morlot C, Armand G (2018) How rock samples can be representative of in situ condition: a case study of Callovo–Oxfordian claystones. J Rock Mech Geotech Eng 10:613–623. https://doi.org/10.1016/j.jrmge.2018.02.004

    Article  Google Scholar 

  13. Davy CA, Skoczylas F, Barnichon J-D, Lebon P (2007) Permeability of macro-cracked argillite under confinement: gas and water testing. Phys Chem Earth Parts ABC 32:667–680. https://doi.org/10.1016/j.pce.2006.02.055

    Article  Google Scholar 

  14. Day R, Potts D (1994) Zero thickness interface elements—numerical stability and application. Int J Numer Anal Methods Geomech 18:689–708. https://doi.org/10.1002/nag.1610181003

    Article  Google Scholar 

  15. De Gennes P-G, Brochard-Wyart F, Quéré D (2004) Capillarity and Wetting Phenomena. Springer, New York. https://doi.org/10.1007/978-0-387-21656-0

    Book  Google Scholar 

  16. Di Donna A, Charrier P, Salager S, Bésuelle P (2019) Self-sealing capacity of argillite samples. In: 7th International Symposium on Deformation Characteristics of Geomaterials https://doi.org/10.1051/e3sconf/20199203005

  17. Di Donna A, Charrier P, Dijkstra J, Andò E, Bésuelle P (2022) The contribution of swelling to self-sealing of claystone studied through x-ray tomography. Phys Chem Earth. https://doi.org/10.1016/j.pce.2022.103191

    Article  Google Scholar 

  18. Fischer KA, Wriggers P (2006) Mortar based frictional contact formulation for higher order interpolations using the moving friction cone. Comput Methods Appl Mech Eng 195:5020–5036. https://doi.org/10.1016/j.cma.2005.09.025

    Article  MathSciNet  Google Scholar 

  19. Gens A, Carol I, Alonso E (1990) A constitutive model for rock joints formulation and numerical implementation. Comput Geotech 9:3–20. https://doi.org/10.1016/0266-352X(90)90026-R

    Article  Google Scholar 

  20. Gentier S, Petitjean C, Riss J, Archambault G (1996) Hydromechanical behavior of a natural joint under shearing. In: ARMA North America Rock Mechanics Symposium. ARMA, p ARMA-96

  21. Giot R, Auvray C, Talandier J (2019) Self-sealing of claystone under X-ray nanotomography. Geol Soc Lond Spec Publ 482:213–223. https://doi.org/10.1144/sp482.4

    Article  Google Scholar 

  22. Goodman RE, Taylor RL, Brekke TL (1968) A model for the mechanics of jointed rock. J Soil Mech Found Div 94:637–659. https://doi.org/10.1061/JSFEAQ.0001133

    Article  Google Scholar 

  23. Guiducci C, Collin F, Radu J-P, Pellegrino A, Charlier R (2003) Numerical modeling of hydro-mechanical fracture behavior. ISRM Congress. https://doi.org/10.1201/9781439833797-c43

    Article  Google Scholar 

  24. Habraken A, Cescotto S (1998) Contact between deformable solids: the fully coupled approach. Math Comput Model 28:153–169. https://doi.org/10.1016/S0895-7177(98)00115-0

    Article  Google Scholar 

  25. Ip SCY, Choo J, Borja RI (2021) Impacts of saturation-dependent anisotropy on the shrinkage behavior of clay rocks. Acta Geotech 16:3381–3400. https://doi.org/10.1007/s11440-021-01268-9

    Article  Google Scholar 

  26. Jia SP, Zhang LW, Wu BS, Yu HD, Shu JX (2018) A coupled hydro-mechanical creep damage model for clayey rock and its application to nuclear waste repository. Tunn Undergr Space Technol 74:230–246. https://doi.org/10.1016/j.tust.2018.01.026

    Article  Google Scholar 

  27. de La Vaissière R, Armand G, Talandier J (2014) Excavation damaged zone under imbibition: evidence of self-sealing into claystone. Unsaturated Soils Res Appl. https://doi.org/10.1201/b17034-216

    Article  Google Scholar 

  28. de La Vaissière R, Armand G, Talandier J (2015) Gas and water flow in an excavation-induced fracture network around an underground drift: a case study for a radioactive waste repository in clay rock. J Hydrol 521:141–156. https://doi.org/10.1016/j.jhydrol.2014.11.067

    Article  Google Scholar 

  29. Levasseur S, Collin F, Daniels K, Dymitrowska M, Harrington J, Jacops E, Kolditz O, Marschall P, Norris S, Sillen X et al (2021) Initial state of the art on gas transport in clayey materials. Deliv D6:1

    Google Scholar 

  30. Liu Z, Shao J, Xie S, Conil N, Zha W (2018) Effects of relative humidity and mineral compositions on creep deformation and failure of a claystone under compression. Int J Rock Mech Min Sci 103:68–76. https://doi.org/10.1016/j.ijrmms.2018.01.015

    Article  Google Scholar 

  31. Nuth M, Laloui L (2008) Effective stress concept in unsaturated soils: Clarification and validation of a unified framework. Int J Numer Anal Methods Geomech 32:771–801. https://doi.org/10.1002/nag.645

    Article  Google Scholar 

  32. Olsson R, Barton N (2001) An improved model for hydromechanical coupling during shearing of rock joints. Int J Rock Mech Min Sci 38:317–329. https://doi.org/10.1016/S1365-1609(00)00079-4

    Article  Google Scholar 

  33. Oron AP, Berkowitz B (1998) Flow in rock fractures: the local cubic law assumption reexamined. Water Resour Res 34:2811–2825

    Article  Google Scholar 

  34. Plesha ME (1995) Rock joints: theory, constitutive equations. Studies in applied mechanics. Elsevier, Amsterdam, pp 375–393. https://doi.org/10.1016/S0922-5382(06)80018-8

    Chapter  Google Scholar 

  35. Puso MA, Laursen TA (2004) A mortar segment-to-segment contact method for large deformation solid mechanics. Comput Methods Appl Mech Eng 193:601–629. https://doi.org/10.1016/j.cma.2003.10.010

    Article  Google Scholar 

  36. Roscoe K, Burland JB (1968) On the generalized stress-strain behaviour of wet clay

  37. Salehnia F, Sillen X, Li X, Charlier R (2017) Numerical simulation of a discontinuous gallery lining’s behavior, and its interaction with rock. Int J Numer Anal Methods Geomech 41:1569–1589. https://doi.org/10.1002/nag.2689

    Article  Google Scholar 

  38. Stavropoulou E, Andò E, Tengattini A, Briffaut M, Dufour F, Atkins D, Armand G (2019) Liquid water uptake in unconfined Callovo Oxfordian clay-rock studied with neutron and X-ray imaging. Acta Geotech 14:19–33. https://doi.org/10.1007/s11440-018-0639-4

    Article  Google Scholar 

  39. Sun Y, Pardoen B, Van Den Eijnden B, Wong H (2023) Modelling the time-dependent mechanical behaviour of clay rocks based on meso- and micro-structural viscous properties. Int J Numer Anal Methods Geomech 47:3177–3208. https://doi.org/10.1002/nag.3617

    Article  Google Scholar 

  40. Tsang C-F, Bernier F, Davies C (2005) Geohydromechanical processes in the excavation damaged zone in crystalline rock, rock salt, and indurated and plastic clays—in the context of radioactive waste disposal. Int J Rock Mech Min Sci 42:109–125. https://doi.org/10.1016/j.ijrmms.2004.08.003

    Article  Google Scholar 

  41. Tsang YW, Witherspoon P (1981) Hydromechanical behavior of a deformable rock fracture subject to normal stress. J Geophys Res Solid Earth 86:9287–9298. https://doi.org/10.1029/JB086iB10p09287

    Article  Google Scholar 

  42. Van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  43. Wang C, Talandier J, Skoczylas F (2022) Swelling and fluid transport of re-sealed Callovo–Oxfordian claystone. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-021-02708-4

    Article  Google Scholar 

  44. Wang H, Cui Y-J, Vu MN, Talandier J, Conil N (2022) Fracture effect on the hydro-mechanical behaviour of Callovo–Oxfordian claystone. Eng Geol 303:106674. https://doi.org/10.1016/j.enggeo.2022.106674

    Article  Google Scholar 

  45. Wang H, de La Vaissière R, Vu M-N, La Borderie C, Gallipoli D (2022) Numerical modelling and in-situ experiment for self-sealing of the induced fracture network of drift into the Callovo–Oxfordian claystone during a hydration process. Comput Geotech 141:104487. https://doi.org/10.1016/j.compgeo.2021.104487

    Article  Google Scholar 

  46. Yven B, Sammartino S, Geraud Y, Homand F, Villieras F (2007) Mineralogy, texture and porosity of Callovo–Oxfordian argillites of the Meuse/Haute-Marne region (Eastern Paris Basin). Mém Société Géologique Fr 178:73–90

    Google Scholar 

  47. Zhang C-L (2013) Sealing of fractures in claystone. J Rock Mech Geotech Eng 5:214–220. https://doi.org/10.1016/j.jrmge.2013.04.001

    Article  Google Scholar 

  48. Zhang C-L, Armand G, Conil N, Laurich B (2019) Investigation on anisotropy of mechanical properties of Callovo–Oxfordian claystone. Eng Geol 251:128–145. https://doi.org/10.1016/j.enggeo.2019.02.008

    Article  Google Scholar 

  49. Zhang C-L, Talandier J (2023) Self-sealing of fractures in indurated claystones measured by water and gas flow. J Rock Mech Geotech Eng 15:227–238. https://doi.org/10.1016/j.jrmge.2022.01.014

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the University of Liège under Special Funds for Research, IPD-STEMA Program. This work was also carried out in the framework of the EURAD, European Joint Program on Radioactive Waste Management (under Grant agreement No 847593), to which the authors are grateful.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adriana Quacquarelli.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Quacquarelli, A., Talandier, J., Di Donna, A. et al. Numerical modeling of self-sealing in fractured clayey materials. Acta Geotech. (2024). https://doi.org/10.1007/s11440-024-02299-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-024-02299-8

Keywords

Navigation