Skip to main content
Log in

Numerical modeling of free-falling spherical penetrometer–clay–water interactions

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Large deformation finite element simulations of the dynamic penetration of underwater free-fall spherical penetrometers into clay are carried out using the coupled Eulerian–Lagrangian approach. Two undrained total stress analysis models are constructed and applied to simulate four well-documented centrifuge tests of sphere penetration. Model A is a new model that simulates both the free-fall process in water and the penetration process in clay. Model B, as usual, simulates only the penetration process in clay in the absence of overlying water. The simulation of the free-fall process in water is validated against an analytical solution and calibrated against the measured impact velocities of the tested spheres upon hitting the clay surface. The ability of the two models to predict the dynamic penetration behavior in clay is evaluated by comparing their results with the centrifuge test results. Model A provides a better prediction of the penetration behavior than Model B. Fully open, partially closed, and fully closed cavities formed by the passages of the sphere and water were reproduced by Model A. The water flow in the wake of the penetrating sphere is shown to have an important influence on the deformations of the clay surface and cavity wall.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

All data generated or analyzed during the study are available from the leading author by request.

Abbreviations

a g :

Acceleration due to Earth’s gravity or artificial gravity

a z :

Linear acceleration of sphere

α w, β w :

Constants in the CD–Re relation of sphere in water

β :

Shear strain rate parameter for su-op

c 0 :

Speed of sound in water

C D, Re:

Drag coefficient and Reynolds number

d e :

Embedment depth measured from the clay surface to the sphere invert

d w, v z w :

Fall distance and velocity of sphere under water

D, m :

Diameter and mass of sphere

E, ν :

Young’s modulus and Poisson’s ratio of clay

g :

Earth’s gravitational acceleration

γ′ :

Submerged unit weight of clay

\(\dot{\gamma }\), \(\dot{\gamma }_{{{\text{ref}}}}\) :

Operative and reference shear strain rates

Γ0 :

Grüneisen parameter for water under the reference state

h d :

Drop height of sphere relative to the clay surface

h dc :

Precalibrated drop height used in the simulation

k :

Rate of increase in undrained shear strength with depth

K 0 :

Coefficient of at-rest lateral earth pressure of clay

μ w :

Dynamic viscosity of water

ρ 0 :

Mass density of water under the reference state

ρ s, \(\rho^{\prime}_{{\text{s}}}\) :

Total and submerged mass densities of sphere

ρ sat, ρ′ :

Saturated and submerged densities of clay

s :

Slope of the linear shock velocity versus particle velocity relation for water

s u :

Undrained shear strength profile of clay

s u0 :

Undrained shear strength at the clay surface

s u-op, s u-ref :

Undrained shear strengths of clay at operative and reference strain rates

σ z, \(\sigma^{\prime}_{z}\) :

Total and effective vertical stresses

t w, t s :

Elapsed times since the commencements of fall in water and penetration in clay

v i :

Impact velocity of sphere upon hitting the clay surface

v z :

Penetration velocity of sphere

z :

Downward positive vertical coordinate with the origin at the clay surface

References

  1. Ads A, Iskander M, Bless S (2020) Shear strength of a synthetic transparent soft clay using a miniature ball penetrometer test. Geotech Test J 43(5):1248–1268. https://doi.org/10.1520/GTJ20190020

    Article  Google Scholar 

  2. Ahmadzadeh M, Saranjam B, Hoseini Fard A, Binesh AR (2014) Numerical simulation of sphere water entry problem using Eulerian-Lagrangian method. Appl Math Model 38(5–6):1673–1684. https://doi.org/10.1016/j.apm.2013.09.005

    Article  MathSciNet  Google Scholar 

  3. Ahmed SM, Agaiby SS (2021) Assessment of undrained non-linear stiffness of clays using rigidity index. Proc Inst Civ Eng Geotech Eng 174(2):139–147. https://doi.org/10.1680/jgeen.20.00077

    Article  Google Scholar 

  4. Albatal A, Stark N, Castellanos B (2020) Estimating in situ relative density and friction angle of nearshore sand from portable free-fall penetrometer tests. Can Geotech J 57(1):17–31. https://doi.org/10.1139/cgj-2018-0267

    Article  Google Scholar 

  5. Aubeny CP, Shi H (2006) Interpretation of impact penetration measurements in soft clays. J Geotech Geoenviron Eng 132(6):770–777. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:6(770)

    Article  Google Scholar 

  6. Augarde CE, Lee SJ, Loukidis D (2021) Numerical modelling of large deformation problems in geotechnical engineering: a state-of-the-art review. Soils Found 61(6):1718–1735. https://doi.org/10.1016/j.sandf.2021.08.007

    Article  Google Scholar 

  7. Basset AB (1888) A treatise on hydrodynamics: with numerous examples, vol 2. George Bell and Sons, London

    Google Scholar 

  8. Basset AB (1888) On the motion of a sphere in a viscous liquid. Phil Trans R Soc A Math Phys Eng Sci 179:43–63. https://doi.org/10.1098/rsta.1888.0003

    Article  Google Scholar 

  9. Biscontin G, Pestana JM (2001) Influence of peripheral velocity on vane shear strength of an artificial clay. Geotech Test J 24(4):423–429. https://doi.org/10.1520/GTJ11140J

    Article  Google Scholar 

  10. Blake AP, O’Loughlin CD, Morton JP, O’Beirne C, Gaudin C, White DJ (2016) In situ measurement of the dynamic penetration of free-fall projectiles in soft soils using a low-cost inertial measurement unit. Geotech Test J 39(2):235–251. https://doi.org/10.1520/GTJ20140135

    Article  Google Scholar 

  11. Borja RI (2013) Plasticity modeling & computation. Springer, Berlin-Heidelberg. https://doi.org/10.1007/978-3-642-38547-6

    Book  Google Scholar 

  12. Borja RI, Yin Q, Zhao Y (2020) Cam-clay plasticity. Part IX: on the anisotropy, heterogeneity, and viscoplasticity of shale. Comput Methods Appl Mech Eng 360:112695. https://doi.org/10.1016/j.cma.2019.112695

    Article  MathSciNet  Google Scholar 

  13. Boukpeti N, White DJ, Randolph MF, Low HE (2012) Strength of fine-grained soils at the solid fluid transition. Géotechnique 62(3):213–226. https://doi.org/10.1680/geot.9.P.069

    Article  Google Scholar 

  14. Calero JS (1996) La génesis de la Mecánica de los Fluidos (1640–1780). Madrid: Universidad Nacional de Educación a Distancia. (in Spanish). (translated into English by Watson VHA (2008) The genesis of fluid mechanics). Springer, Dordrecht, pp 1640–1780

    Google Scholar 

  15. Carbonell JM, Monforte L, Ciantia MO, Arroyo M, Gens A (2022) Geotechnical particle finite element method for modeling of soil–structure interaction under large deformation conditions. J Rock Mech Geotech Eng 14(3):967–983. https://doi.org/10.1016/j.jrmge.2021.12.006

    Article  Google Scholar 

  16. Chen Z, Tho KK, Leung CF, Chow YK (2013) Influence of overburden pressure and soil rigidity on uplift behavior of square plate anchor in uniform clay. Comput Geotech 52:71–81. https://doi.org/10.1016/j.compgeo.2013.04.002

    Article  Google Scholar 

  17. Choi J, Jang B-S, Ju H, Han S (2021) Undrained bearing capacity of spudcan in soft-over-stiff clay after penetration. Ocean Eng 235:109369. https://doi.org/10.1016/j.oceaneng.2021.109369

    Article  Google Scholar 

  18. Chow SH, Airey DW (2013) Soil strength characterisation using free-falling penetrometers. Géotechnique 63(13):1131–1143. https://doi.org/10.1680/geot.12.P.129

    Article  Google Scholar 

  19. Chow SH, Airey DW (2014) Free-falling penetrometers: a laboratory investigation in clay. J Geotech Geoenviron Eng 140(1):201–214. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000973

    Article  Google Scholar 

  20. Chung SF, Randolph MF, Schneider JA (2006) Effect of penetration rate on penetrometer resistance in clay. J Geotech Geoenviron Eng 132(9):1188–1196. https://doi.org/10.1061/(ASCE)1090-0241(2006)132:9(1188)

    Article  Google Scholar 

  21. Craig WH, Chua K (1990) Deep penetration of spud-can foundations on sand and clay. Géotechnique 40(4):541–556. https://doi.org/10.1680/geot.1990.40.4.541

    Article  Google Scholar 

  22. Systèmes D (2017) ABAQUS, version 2017, analysis user’s manual. Dassault Systèmes Inc, Providence

    Google Scholar 

  23. DeJong JT, Yafrate NJ, DeGroot DJ, Low HE, Randolph MF (2010) Recommended practice for full-flow penetrometer testing and analysis. Geotech Test J 33(2):137–149. https://doi.org/10.1520/GTJ102468

    Article  Google Scholar 

  24. Dey R, Hawlader BC, Phillips R, Soga K (2016) Numerical modelling of submarine landslides with sensitive clay layers. Géotechnique 66(5):454–468. https://doi.org/10.1680/jgeot.15.P.111

    Article  Google Scholar 

  25. Dong X, Shiri H, Zhang W, Randolph MF (2021) The influence of pipeline–backfill–trench interaction on the lateral soil resistance: a numerical investigation. Comput Geotech 137:104307. https://doi.org/10.1016/j.compgeo.2021.104307

    Article  Google Scholar 

  26. Drebushchak VA (2020) Thermal expansion of solids: review on theories. J Therm Anal Calorim 142(2):1097–1113. https://doi.org/10.1007/s10973-020-09370-y

    Article  Google Scholar 

  27. Duncan JM, Wright SG, Brandon TL (2014) Soil strength and slope stability, 2nd edn. Wiley, Hoboken

    Google Scholar 

  28. Dutta S, Hawlader B (2019) Pipeline–soil–water interaction modelling for submarine landslide impact on suspended offshore pipelines. Géotechnique 69(1):29–41. https://doi.org/10.1680/jgeot.17.P.084

    Article  Google Scholar 

  29. Dutta S, Hawlader B, Phillips R (2015) Finite element modeling of partially embedded pipelines in clay seabed using Coupled Eulerian-Lagrangian method. Can Geotech J 52(1):58–72. https://doi.org/10.1139/cgj-2014-0045

    Article  Google Scholar 

  30. Einav I, Randolph MF (2005) Combining upper bound and strain path methods for evaluating penetration resistance. Int J Numer Methods Eng 63(14):1991–2016. https://doi.org/10.1002/nme.1350

    Article  Google Scholar 

  31. Erbrich C, Hefer P (2002) Installation of the Laminaria suction piles—a case history. In: Offshore technology conference, OTC 14240. https://doi.org/10.4043/14240-MS.

  32. Feng Z-G, Gatewood J, Michaelides EE (2021) Wall effects on the flow dynamics of a rigid sphere in motion. J Fluids Eng 143(8):081106. https://doi.org/10.1115/1.4051215

    Article  Google Scholar 

  33. Fu Y, Li YP, Liu Y, Lee FH, Zhang XY, Gu H (2019) An effective stress theoretical model for shear resistance and adhesion factor of dynamically installed anchors. Géotechnique 69(11):1004–1018. https://doi.org/10.1680/jgeot.18.P.132

    Article  Google Scholar 

  34. Fu Y, Liu Y, Yu J (2019) Effects of reconsolidation time on holding capacity of deepwater dynamically installed anchors. Can Geotech J 56(12):1876–1888. https://doi.org/10.1139/cgj-2018-0836

    Article  Google Scholar 

  35. Ganesan SA, Bolton MD (2013) Characterisation of a high plasticity marine clay using a T-bar penetrometer. Underw Tech 31(4):179–185. https://doi.org/10.3723/ut.31.179

    Article  Google Scholar 

  36. Ghosh Dastider A, Chatterjee S, Basu P (2021) Advancement in estimation of undrained shear strength through fall cone tests. J Geotech Geoenviron Eng 147(7):04021047. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002535

    Article  Google Scholar 

  37. Ghosh Dastider A, Mana DSK, Chatterjee S, Basu P (2020) Free fall penetration of ball penetrometers in clay. Int J Offshore Polar Eng 30(2):248–254. https://doi.org/10.17736/ijope.2020.cl16

    Article  Google Scholar 

  38. Goossens WRA (2019) Review of the empirical correlations for the drag coefficient of rigid spheres. Powder Tech 352:350–359. https://doi.org/10.1016/j.powtec.2019.04.075

    Article  Google Scholar 

  39. Grüneisen E (1912) Theorie des festen Zustandes einatomiger Elemente. Ann Phys 344(12):257–306. https://doi.org/10.1002/andp.19123441202.(inGerman)

    Article  Google Scholar 

  40. Gu Y, Lei GH, Ke L, Wang Y (2020) Simplified analysis of curvilinear penetration of free fall sphere projectile in soft soil. Comput Geotech 126:103756. https://doi.org/10.1016/j.compgeo.2020.103756

    Article  Google Scholar 

  41. Guo J (2011) Motion of spheres falling through fluids. J Hydraul Res 49(1):32–41. https://doi.org/10.1080/00221686.2010.538572

    Article  Google Scholar 

  42. Guo X-S, Nian T-K, Wang D, Gu Z-D (2022) Evaluation of undrained shear strength of surficial marine clays using ball penetration-based CFD modelling. Acta Geotech 17(5):1627–1643. https://doi.org/10.1007/s11440-021-01347-x

    Article  Google Scholar 

  43. Han C, Chen X, Liu J (2019) Physical and numerical modeling of dynamic penetration of ship anchor in clay. J Waterway Port Coastal Ocean Eng 145(1):04018030. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000490

    Article  Google Scholar 

  44. Han C, Liu J (2020) A review on the entire installation process of dynamic installed anchors. Ocean Eng 202:107173. https://doi.org/10.1016/j.oceaneng.2020.107173

    Article  Google Scholar 

  45. Han C, Liu J, Zhang Y, Zhao W (2019) An innovative booster for dynamic installation of OMNI-Max anchors in clay: physical modelling. Ocean Eng 171:345–360. https://doi.org/10.1016/j.oceaneng.2018.10.029

    Article  Google Scholar 

  46. Han C, Zhang Y, Liu J, Wang X (2021) Interpreting strength parameters in soft clays from a new free-fall penetrometer. Comput Geotech 135:104157. https://doi.org/10.1016/j.compgeo.2021.104157

    Article  Google Scholar 

  47. Hawlader B, Dutta S, Fouzder A, Zakeri A (2015) Penetration of steel catenary riser in soft clay seabed: finite-element and finite-volume methods. Int J Geomech 15(6):04015008. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000474

    Article  Google Scholar 

  48. Hossain MS, Hu Y, Randolph MF, White DJ (2005) Limiting cavity depth for spudcan foundations penetrating clay. Géotechnique 55(9):679–690. https://doi.org/10.1680/geot.2005.55.9.679

    Article  Google Scholar 

  49. House AR, Oliveira JRMS, Randolph MF (2001) Evaluating the coefficient of consolidation using penetration tests. Int J Phys Model Geotech 1(3):17–26. https://doi.org/10.1680/ijpmg.2001.010302

    Article  Google Scholar 

  50. Hu N, Shang X-Y, Yu H-S (2018) Theoretical analysis of pressure-dependent K0 for normally consolidated clays using critical state soil models. Int J Geomech 18(3):04017159. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001075

    Article  Google Scholar 

  51. Hu P, Wang D, Cassidy MJ, Stanier SA (2014) Predicting the resistance profile of a spudcan penetrating sand overlying clay. Can Geotech J 51(10):1151–1164. https://doi.org/10.1139/cgj-2013-0374

    Article  Google Scholar 

  52. Hu P, Wang D, Stanier SA, Cassidy MJ (2015) Assessing the punch-through hazard of a spudcan on sand overlying clay. Géotechnique 65(11):883–896. https://doi.org/10.1680/jgeot.14.P.097

    Article  Google Scholar 

  53. Hugoniot H (1887) Mémoire sur la propagation du movement dans les corps et spécialement dans les gaz parfaits, premième Partie. J. de L’École Polytechnique 57, 3–97. (in French). (Translated into English and reprinted in Johnson JN, Chéret R (1998) Classic papers in shock compression science. Springer, New York. https://doi.org/10.1007/978-1-4612-2218-7).

  54. Hugoniot H (1889) Mémoire sur la propagation du movement dans les corps et spécialement dans les gaz parfaits, deuxième Partie. J. de L’École Polytechnique 58, 1–125. (in French). (Translated into English and reprinted in Johnson JN, Chéret R (1998) Classic papers in shock compression science. Springer, New York. https://doi.org/10.1007/978-1-4612-2218-7).

  55. Jaber R, Stark N, Jafari N, Ravichandran N (2021) Combined portable free fall penetrometer and chirp sonar measurements of three texas river sections post hurricane harvey. Eng Geol 294:106324. https://doi.org/10.1016/j.enggeo.2021.106324

    Article  Google Scholar 

  56. Jeong SW, Leroueil S, Locat J (2009) Applicability of power law for describing the rheology of soils of different origins and characteristics. Can Geotech J 46(9):1011–1023. https://doi.org/10.1139/T09-031

    Article  Google Scholar 

  57. Jun MJ, Kim YH, Hossain MS, Cassidy MJ, Hu Y, Sim JW (2018) Numerical investigation of novel spudcan shapes for easing spudcan–footprint interactions. J Geotech Geoenviron Eng 144(9):04018055. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001925

    Article  Google Scholar 

  58. Kim YH, Hossain MS (2015) Dynamic installation of OMNI-Max anchors in clay: numerical analysis. Géotechnique 65(12):1029–1037. https://doi.org/10.1680/geot.15.T.008

    Article  Google Scholar 

  59. Kim YH, Hossain MS, Edwards D, Wong PC (2019) Penetration response of spudcans in layered sands. Appl Ocean Res 82:236–244. https://doi.org/10.1016/j.apor.2018.11.008

    Article  Google Scholar 

  60. Kim YH, Hossain MS, Wang D (2015) Effect of strain rate and strain softening on embedment depth of a torpedo anchor in clay. Ocean Eng 108:704–715. https://doi.org/10.1016/j.oceaneng.2015.07.067

    Article  Google Scholar 

  61. Kim YH, Hossain MS, Wang D, Randolph MF (2015) Numerical investigation of dynamic installation of torpedo anchors in clay. Ocean Eng 108:820–832. https://doi.org/10.1016/j.oceaneng.2015.08.033

    Article  Google Scholar 

  62. Klar A, Osman AS (2008) Continuous velocity fields for the T-bar problem. Int J Numer Anal Methods Geomech 32(8):949–963. https://doi.org/10.1002/nag.653

    Article  Google Scholar 

  63. Klar A, Pinkert S (2010) Steady-state solution for cylindrical penetrometers. Int J Numer Anal Methods Geomech 34(6):645–659. https://doi.org/10.1002/nag.836

    Article  Google Scholar 

  64. Klar A, Pinkert S, DeJong JT (2014) Evaluation of a logarithmic-law strength rate parameter using full-flow penetrometers. Geotech Res 1(2):53–59. https://doi.org/10.1680/gr.14.00002

    Article  Google Scholar 

  65. Kulhawy FH, Mayne PW (1990) Manual on estimating soil properties for foundation design. Report No. EPRI EL-6800. Electric Power Research Institute, Palo Alto

  66. Kwon O, Lee J, Kim G, Kim I, Lee J (2019) Investigation of pullout load capacity for helical anchors subjected to inclined loading conditions using coupled Eulerian-Lagrangian analyses. Comput Geotech 111:66–75. https://doi.org/10.1016/j.compgeo.2019.03.007

    Article  Google Scholar 

  67. Ladd CC, Foott R, Ishihara K, Schlosser F, Poulos HG (1977) Stress–deformation and strength characteristics. In: Proc. 9th Int. Conf. on Soil Mech. Found. Eng., Tokyo, Japan, pp. 421–494.

  68. Lee J, Lee J (2022) Enhancing pullout load capacity of helical anchor in clay with adjusted load application point under inclined loading condition. J Geotech Geoenviron Eng 148(10):04022075. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002870

    Article  Google Scholar 

  69. Lehane BM, O’Loughlin CD, Gaudin C, Randolph MF (2009) Rate effects on penetrometer resistance in Kaolin. Géotechnique 59(1):41–52. https://doi.org/10.1680/geot.2007.00072

    Article  Google Scholar 

  70. Liu J, Bu N, Han C, Yi P (2022) Numerical modelling on anchor–soil–water interaction for dynamic installation of gravity installed anchors. Ocean Eng 244:110412. https://doi.org/10.1016/j.oceaneng.2021.110412

    Article  Google Scholar 

  71. Liu J, Chen X, Han C, Wang X (2019) Estimation of intact undrained shear strength of clay using full-flow penetrometers. Comput Geotech 115:103161. https://doi.org/10.1016/j.compgeo.2019.103161

    Article  Google Scholar 

  72. Liu J, Liu L, Han C (2022) Innovative booster for dynamic installation of OMNI-Max anchor in clay: numerical modelling. J Waterway Port Coastal Ocean Eng 148(1):04021043. https://doi.org/10.1061/(ASCE)WW.1943-5460.0000691

    Article  Google Scholar 

  73. Low HE, Lunne T, Andersen KH, Sjursen MA, Li X, Randolph MF (2010) Estimation of intact and remoulded undrained shear strengths from penetration tests in soft clays. Géotechnique 60(11):843–859. https://doi.org/10.1680/geot.9.P.017

    Article  Google Scholar 

  74. Lu Q, Hu Y, Randolph MF (2000) FE analysis for T-bar and spherical penetrometers in cohesive soil. In: ISOPE 2000: Proc. 10th Int. Offshore Polar Eng. Conf. (J.S. Chung, T. Matsui, H. Moshagen eds.), May 28–June 2, 2000, Seattle, USA, Vol. 2, pp. 617–623.

  75. Mahmoodzadeh H, Wang D, Randolph MF (2015) Interpretation of piezoball dissipation testing in clay. Géotechnique 65(10):831–842. https://doi.org/10.1680/geot.14.P.213

    Article  Google Scholar 

  76. Mana DSK, Ghosh Dastider A, Basu P, Chatterjee S (2018) In situ undrained shear strength characterization using data from free fall ball penetrometer tests. Comput Geotech 104:310–320. https://doi.org/10.1016/j.compgeo.2017.12.006

    Article  Google Scholar 

  77. McCarron WO (2016) Limit analysis and finite element evaluation of lateral pipe–soil interaction resistance. Can Geotech J 53(1):14–21. https://doi.org/10.1139/cgj-2014-0409

    Article  Google Scholar 

  78. Menétrey P, Willam K (1995) Triaxial failure criterion for concrete and its generalization. ACI Struct J 92(3):311–318. https://doi.org/10.14359/1132

    Article  Google Scholar 

  79. Mie G (1903) Zur kinetischen Theorie der einatomigen Körper. Ann Phys 316(8):657–697. https://doi.org/10.1002/andp.19033160802.(inGerman)

    Article  Google Scholar 

  80. Morton JP, O’Loughlin CD (2012) Dynamic penetration of a sphere in clay. In: Allan P (Ed) Offshore site investigation and geotechnics: integrated geotechnologies—present and future, proceedings of the 7th international conference, 12–14 September 2012, Royal Geographical Society, London. Society for Underwater Technology, pp. 223–229.

  81. Morton JP, O’Loughlin CD, White DJ (2016) Centrifuge modelling of an instrumented free-fall sphere for measurement of undrained strength in fine-grained soils. Can Geotech J 53(6):918–929. https://doi.org/10.1139/cgj-2015-0242

    Article  Google Scholar 

  82. Morton JP, O’Loughlin CD, White DJ (2016) Estimation of soil strength in fine-grained soils by instrumented free-fall sphere tests. Géotechnique 66(12):959–968. https://doi.org/10.1680/jgeot.15.P.038

    Article  Google Scholar 

  83. Mumtaz MB, Stark N (2020) Pore pressure dissipation induced by high-velocity impacts of a portable free-fall penetrometer in clays. J Geotech Geoenviron Eng 146(9):05020008. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002273

    Article  Google Scholar 

  84. Nanda S, Sivakumar V, Hoyer P, Bradshaw A, Gavin KG, Gerkus H, Jalilvand S, Gilbert RB, Doherty P, Fanning J (2017) Effects of strain rates on the undrained shear strength of Kaolin. Geotech Testing J 40(6):951–962. https://doi.org/10.1520/GTJ20160101

    Article  Google Scholar 

  85. Newton I (1687) Philosophiæ naturalis principia mathematica, 1st edition. Cambridge. (in Latin). (The 3rd (1726) edition was translated into English by Cohen IB, Whitman A, Budenz J (2016) The principia: mathematical principles of natural philosophy, the authoritative translation and guide. University of California Press, Berkeley).

  86. Nguyen TD, Chung SG (2015) Effect of shaft area on ball resistances in soft clays. Proc Inst Civ Eng Geotech Eng 168(2):103–119. https://doi.org/10.1680/geng.14.00023

    Article  Google Scholar 

  87. O’Beirne C (2016) Development of design approaches for dynamically installed anchors validated through field and centrifuge studies. PhD thesis. School of Civil, Environmental and Mining Engineering, The University of Western Australia.

  88. O’Beirne C, O’Loughlin CD, Gaudin C (2015) Soil response in the wake of dynamically installed projectiles. Géotech Lett 5(3):153–160. https://doi.org/10.1680/jgele.15.00055

    Article  Google Scholar 

  89. O’Loughlin CD, Richardson MD, Randolph MF, Gaudin C (2013) Penetration of dynamically installed anchors in clay. Géotechnique 63(11):909–919. https://doi.org/10.1680/geot.11.P.137

    Article  Google Scholar 

  90. Ohayon YH, Pinkert S (2021) Experimental evaluation of the reference, shear-rate independent, undrained shear strength of soft clays. Int J Geomech 21(11):06021031. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002201

    Article  Google Scholar 

  91. Potts DM, Zdravković L (1999) Finite element analysis in geotechnical engineering, Vol. 1: Theory. Thomas Telford Press, London

    Book  Google Scholar 

  92. Qiu G, Grabe J (2012) Numerical investigation of bearing capacity due to spudcan penetration in sand overlying clay. Can Geotech J 49(12):1393–1407. https://doi.org/10.1139/T2012-085

    Article  Google Scholar 

  93. Qiu G, Henke S (2011) Controlled installation of spudcan foundations on loose sand overlying weak clay. Mar Struc 24(4):528–550. https://doi.org/10.1016/j.marstruc.2011.06.005

    Article  Google Scholar 

  94. Qiu G, Henke S, Grabe J (2011) Application of a coupled Eulerian-Lagrangian approach on geomechanical problems involving large deformations. Comput Geotech 38(1):30–39. https://doi.org/10.1016/j.compgeo.2010.09.002

    Article  Google Scholar 

  95. Randolph MF, Martin CM, Hu Y (2000) Limiting resistance of a spherical penetrometer in cohesive material. Géotechnique 50(5):573–582. https://doi.org/10.1680/geot.2000.50.5.573

    Article  Google Scholar 

  96. Randolph MF, O’Neill MP, Stewart DP, Erbrich C (1998) Performance of suction anchors in fine-grained calcareous soils. In: Offshore Technology Conference, OTC 8831. https://doi.org/10.4043/8831-MS.

  97. Randolph MF, Stanier SA, O’Loughlin CD, Chow SH, Bienen B, Doherty JP, Mohr H, Ragni R, Schneider MA, White DJ, Schneider JA (2018) Penetrometer equipment and testing techniques for offshore design of foundations, anchors and pipelines. In: Hicks MA, Pisanò F, Peuchen J (2018) Cone Penetration Testing 2018: Proceedings of the 4th international symposium on cone penetration testing (CPT’18), 21–22 June 2018, Delft, The Netherlands. CRC Press/Balkema, Leiden. pp. 3–23. https://doi.org/10.1201/9780429505980.

  98. Reynolds O (1883) An experimental investigation of the circumstances which determine whether the motion of water shall be direct or sinuous, and of the law of resistance in parallel channels. Proc R Soc Lond 35(224–226):84–99. https://doi.org/10.1098/rspl.1883.0018

    Article  Google Scholar 

  99. Riad B, Zhang X (2019) Closed-form formulation for continuous prediction of at-rest coefficient for saturated soils. Int J Geomech 19(10):04019110. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001491

    Article  Google Scholar 

  100. Rohatgi A (2022) WebPlotDigitizer, version 4.6. https://automeris.io/WebPlotDigitizer. Accessed 1 Nov 2022.

  101. Rubey WW (1933) Settling velocities of gravel, sand, and silt particles. Am J Sci s5–25(148):325–338. https://doi.org/10.2475/ajs.s5-25.148.325

    Article  Google Scholar 

  102. Sahdi F, Gaudin C, White DJ (2014) Strength properties of ultra-soft kaolin. Can Geotech J 51(4):420–431. https://doi.org/10.1139/cgj-2013-0236

    Article  Google Scholar 

  103. Stark N, Mewis P, Reeve B, Florence M, Piller J, Simon J (2022) Vertical pore pressure variations and geotechnical sediment properties at a sandy beach. Coast Eng 172:104058. https://doi.org/10.1016/j.coastaleng.2021.104058

    Article  Google Scholar 

  104. Stark N, Parasie N, Peuchen J (2022) Deepwater soil investigation using a free fall penetrometer. Can Geotech J 59(12):2196–2201. https://doi.org/10.1139/cgj-2022-0029

    Article  Google Scholar 

  105. Steiner A, Kopf AJ, L’Heureux J-S, Kreiter S, Stegmann S, Haflidason H, Moerz T (2014) In situ dynamic piezocone penetrometer tests in natural clayey soils—a reappraisal of strain-rate corrections. Can Geotech J 51(3):272–288. https://doi.org/10.1139/cgj-2013-0048

    Article  Google Scholar 

  106. Stoecklin A, Trapper P, Puzrin AM (2021) Controlling factors for post-failure evolution of subaqueous landslides. Géotechnique 71(10):879–892. https://doi.org/10.1680/jgeot.19.P.230

    Article  Google Scholar 

  107. Stokes GG (1845) On the theories of the internal friction of fluids in motion, and of the equilibrium and motion of elastic solids. Trans. Cambridge Philos Soc 8(3): 287–319. (Reprinted in Stokes, G.G., 1880. Mathematical and physical papers, Vol. 1. Cambridge: Cambridge University Press. https://doi.org/10.1017/CBO9780511702242.005, and Pelissier MA, Hoeber H, van de Coevering N, Jones IF (2007) Classics of elastic wave theory. Society of Exploration Geophysicists, Tulsa. https://doi.org/10.1190/1.9781560801931.ch3e).

  108. Stokes GG (1851) On the effect of the internal friction of fluids on the motion of pendulums. Trans Cambridge Philos Soc 9(2): 8–106. (Reprinted in Stokes, G.G., 1901. Mathematical and physical papers, Vol. 3. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511702266).

  109. Sun C, Bransby MF, Neubecker SR, Randolph MF, Feng X, Gourvenec S (2020) Numerical investigations into development of seabed trenching in semitaut moorings. J Geotech Geoenviron Eng 146(10):04020098. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002347

    Article  Google Scholar 

  110. Sun C, Feng X, Neubecker SR, Randolph MF, Bransby MF, Gourvenec S (2019) Numerical study of mobilized friction along embedded catenary mooring chains. J Geotech Geoenviron Eng 145(10):04019081. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002154

    Article  Google Scholar 

  111. Talesnick M, Nachum S, Frydman S (2021) K0 determination using improved experimental technique. Géotechnique 71(6):509–520. https://doi.org/10.1680/jgeot.19.P.019

    Article  Google Scholar 

  112. Teerachaikulpanich N, Okumura S, Matsunaga K, Ohta H (2007) Estimation of coefficient of earth pressure at rest using modified oedometer test. Soils Found 47(2):349–360. https://doi.org/10.3208/sandf.47.349

    Article  Google Scholar 

  113. Tho KK, Chen Z, Leung CF, Chow YK (2014) Pullout behaviour of plate anchor in clay with linearly increasing strength. Can Geotech J 51(1):92–102. https://doi.org/10.1139/cgj-2013-0140

    Article  Google Scholar 

  114. Tho KK, Leung CF, Chow YK, Palmer AC (2012) Deep cavity flow mechanism of pipe penetration in clay. Can Geotech J 49(1):59–69. https://doi.org/10.1139/T11-088

    Article  Google Scholar 

  115. Tho KK, Leung CF, Chow YK, Swaddiwudhipong S (2012) Eulerian finite-element technique for analysis of jack-up spudcan penetration. Int J Geomech 12(1):64–73. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000111

    Article  Google Scholar 

  116. Ting CMR, Sills GC, Wijeyesekera DC (1994) Development of K0 in soft soils. Géotechnique 44(1):101–109. https://doi.org/10.1680/geot.1994.44.1.109

    Article  Google Scholar 

  117. Trapper PA, Puzrin AM, Germanovich LN (2015) Effects of shear band propagation on early waves generated by initial breakoff of tsunamigenic landslides. Mar Geol 370:99–112. https://doi.org/10.1016/j.margeo.2015.10.014

    Article  Google Scholar 

  118. Ullah SN, Hu Y, White D, Stanier S (2014) LDFE study of bottom boundary effect in foundation model tests. Int J Phys Model Geotech 14(3):80–87. https://doi.org/10.1680/ijpmg.14.00004

    Article  Google Scholar 

  119. Ullah SN, Hu Y, Stanier S, White D (2017) Lateral boundary effects in centrifuge foundation tests. Int J Phys Model Geotech 17(3):144–160. https://doi.org/10.1680/jphmg.15.00034

    Article  Google Scholar 

  120. Vardanega PJ, Bolton MD (2013) Stiffness of clays and silts: normalizing shear modulus and shear strain. J Geotech Geoenviron Eng 139(9):1575–1589. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000887

    Article  Google Scholar 

  121. Wang D, Bienen B, Nazem M, Tian Y, Zheng J, Pucker T, Randolph MF (2015) Large deformation finite element analyses in geotechnical engineering. Comput Geotech 65:104–114. https://doi.org/10.1016/j.compgeo.2014.12.005

    Article  Google Scholar 

  122. Wang W, Wang X, Yu G (2016) Penetration depth of torpedo anchor in cohesive soil by free fall. Ocean Eng 116:286–294. https://doi.org/10.1016/j.oceaneng.2016.03.003

    Article  Google Scholar 

  123. Wichtmann T, Triantafyllidis T (2018) Monotonic and cyclic tests on kaolin: a database for the development, calibration and verification of constitutive models for cohesive soils with focus to cyclic loading. Acta Geotech 13(5):1103–1128. https://doi.org/10.1007/s11440-017-0588-3

    Article  Google Scholar 

  124. Wilkins ML (1999) Computer simulation of dynamic phenomena. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-662-03885-7

    Book  Google Scholar 

  125. Yan WM, Chang J (2015) Effect of pore water salinity on the coefficient of earth pressure at rest and friction angle of three selected fine-grained materials. Eng Geol 193:153–157. https://doi.org/10.1016/j.enggeo.2015.04.025

    Article  Google Scholar 

  126. Yi JT, Huang LY, Li DQ, Liu Y (2020) A large-deformation random finite-element study: failure mechanism and bearing capacity of spudcan in a spatially varying clayey seabed. Géotechnique 70(5):392–405. https://doi.org/10.1680/jgeot.18.P.171

    Article  Google Scholar 

  127. Yu L, Zhang H, Liu J, Huang Y (2021) Numerical study of footprint generation and reinstallation of jack-up footings. J Geotech Geoenviron Eng 147(10):04021107. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002625

    Article  Google Scholar 

  128. Zhao Y, Kim Y, Hossain MS, Nazem M, Liu J, Hu Y (2019) Numerical advancements on the analysis of dynamically installed anchors. Ocean Eng 182:343–359. https://doi.org/10.1016/j.oceaneng.2019.04.079

    Article  Google Scholar 

  129. Zheng J, Hossain MS, Wang D (2015) New design approach for spudcan penetration in nonuniform clay with an interbedded stiff layer. J Geotech Geoenviron Eng 141(4):04015003. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001282

    Article  Google Scholar 

  130. Zheng J, Hossain MS, Wang D (2015) Numerical modeling of spudcan deep penetration in three-layer clays. Int J Geomech 15(6):04014089. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000439

    Article  Google Scholar 

  131. Zheng J, Hossain MS, Wang D (2016) Prediction of spudcan penetration resistance profile in stiff-over-soft clays. Can Geotech J 53(12):1978–1990. https://doi.org/10.1139/cgj-2015-0339

    Article  Google Scholar 

  132. Zhou H, Randolph MF (2007) Computational techniques and shear band development for cylindrical and spherical penetrometers in strain-softening clay. Int J Geomech 7(4):287–295. https://doi.org/10.1061/(ASCE)1532-3641(2007)7:4(287)

    Article  Google Scholar 

  133. Zhou H, Randolph MF (2009) Resistance of full-flow penetrometers in rate-dependent and strain-softening clay. Géotechnique 59(2):79–86. https://doi.org/10.1680/geot.2007.00164

    Article  Google Scholar 

  134. Zhou H, Randolph MF (2011) Effect of shaft on resistance of a ball penetrometer. Géotechnique 61(11):973–981. https://doi.org/10.1680/geot.9.P.062

    Article  Google Scholar 

  135. Zhou M, Hossain MS, Hu Y, Liu H (2013) Behaviour of ball penetrometer in uniform single- and double-layer clays. Géotechnique 63(8):682–694. https://doi.org/10.1680/geot.12.P.026

    Article  Google Scholar 

  136. Zhou M, Hossain MS, Hu Y, Liu H (2016) Scale issues and interpretation of ball penetration in stratified deposits in centrifuge testing. J Geotech Geoenviron Eng 142(5):04015103. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001442

    Article  Google Scholar 

  137. Zhu H, Randolph MF (2011) Numerical analysis of a cylinder moving through rate-dependent undrained soil. Ocean Eng 38(7):943–953. https://doi.org/10.1016/j.oceaneng.2010.08.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully appreciate the financial support of the National Natural Science Foundation of China (grant numbers 52178326 and 51578213), the Fundamental Research Funds for the Central Universities of China (grant number B200203091), the Innovation Group Project of Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai) (grant number SML2022014), and the Postgraduate Research & Practice Innovation Program of Jiangsu Province (grant number KYCX20_0446).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Hui Lei.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, Y., Lei, G.H. & Qin, X. Numerical modeling of free-falling spherical penetrometer–clay–water interactions. Acta Geotech. 19, 2395–2418 (2024). https://doi.org/10.1007/s11440-024-02290-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-024-02290-3

Keywords

Navigation