Skip to main content
Log in

Experimental study on cyclic behavior of aeolian sand stabilized with geopolymer and fines

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Aeolian sand (AS) is locally available in desert area that can be used as road construction material. However, AS is a loose granular material with low bearing capacity which needs to be stabilized. This paper presents a novel study of using geopolymer (GP) and fines to stabilize AS. A series of cyclic triaxial tests was conducted to study the effect of GP and fines contents on cyclic response of stabilized AS. The experimental results show that adding fines into AS can effectively increase the cyclic loading capacity but increase the accumulated axial strain of the mixture; inclusion of GP into the AS-fines mixture greatly enhances the cyclic loading capacity and reduces the accumulated axial strain of the mixture. The shakedown response of the untreated AS changes from plastic shakedown to incremental collapse with increase in cyclic stress ratio (CSR); however, the GP-fines-AS mixture with higher fines and GP contents mainly experiences plastic shakedown. The modulus index of untreated AS or fines-containing AS shows an increase-stable trend with loading cycles, indicating strengthening in the soil matrix, but that of the GP-fines-AS mixture shows increase-stable, stable or decrease-stable trend with loading cycles, depending on the CSR and fines and GP contents. Microcharacterization using scanning electron microscope (SEM) shows that the added fines greatly alter the microstructure of AS by filling the voids and acting as lubricant, which facilitates the movement of AS particles and thus induces larger axial strain. The added GP increases the cyclic loading capacity of the treated soil by inducing a chemical fabric in the treated soils. Increase in fines and GP content results in larger contact area and stronger fabric leading to enhanced stabilizing effect.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data availability

Some or all data, models, or code that supports the findings of this study is available from the corresponding author upon reasonable request.

References

  1. Abdullah HH, Shahin MA, Walske ML, Karrech A (2021) Cyclic behaviour of clay stabilised with fly-ash based geopolymer incorporating ground granulated slag. Transp Geotech 26:100430. https://doi.org/10.1016/j.trgeo.2020.100430

    Article  Google Scholar 

  2. Abdullah H, Shahin M, Walske M (2019) Geo-mechanical behavior of clay soils stabilized at ambient temperature with fly-ash geopolymer-incorporated granulated slag. Soils and Found 59(6):1906–1920. https://doi.org/10.1016/j.sandf.2019.08.005

    Article  Google Scholar 

  3. Ahmari S, Zhang L (2012) Production of eco-friendly bricks from copper mine tailings through geopolymerization. Constr Build Mater 29:323–331. https://doi.org/10.1016/j.conbuildmat.2011.10.048

    Article  Google Scholar 

  4. Alarcon-Guzman A, Chameau JL, Leonards GA, Frost JD (1989) Shear modulus and cyclic undrained behavior of sands. Soils and Found 29(4):105–119. https://doi.org/10.3208/sandf1972.29.4_105

    Article  Google Scholar 

  5. Alkarni A, Elkholy S (2012) Improving geotechnical properties of dune sands through cement stabilization. J Eng Comput Sci 5(1):1–19

    Google Scholar 

  6. Arias-Trujillo J, Matías-Sanchez A, Cantero B, López-Querol S (2020) Effect of polymer emulsion on the bearing capacity of aeolian sand under extreme confinement conditions. Constr Build Mater 236:117473. https://doi.org/10.1016/j.conbuildmat.2019.117473

    Article  CAS  Google Scholar 

  7. Arrieta Baldovino JDJ, Izzo R, Rose J, Avanci M (2020) Geopolymers based on recycled glass powder for soil stabilization. Geotech Geol Eng 38:4013–4031. https://doi.org/10.1007/s10706-020-01274-w

    Article  Google Scholar 

  8. Bagriacik B (2021) Utilization of alkali-activated construction demolition waste for sandy soil improvement with large-scale laboratory experiments. Constr Build Mater 302:124173. https://doi.org/10.1016/j.conbuildmat.2021.124173

    Article  CAS  Google Scholar 

  9. Balczár I, Korim T, Kovács A, Mako E (2016) Mechanochemical and thermal activation of kaolin for manufacturing geopolymer mortars – comparative study. Ceram Int 42(14):15367–15375. https://doi.org/10.1016/j.ceramint.2016.06.182

    Article  CAS  Google Scholar 

  10. Cao Z, Zhang Q, Cai Y, Cui Y, Gu C, Wang J (2022) Impact of fines on the accumulated strain of unsaturated road base aggregate under cyclic loadings. Can Geotech J 59(11):2022–2029. https://doi.org/10.1139/cgj-2021-0297

    Article  Google Scholar 

  11. Chen R, Zhu Y, Lai H, Bao W (2020) Stabilization of soft soil using low-carbon alkali-activated binder. Environ Earth Sci 79:510. https://doi.org/10.1007/s12665-020-09259-x

    Article  ADS  CAS  Google Scholar 

  12. Collins I, Boulbibane M (2000) Geomechanical analysis of unbound pavements based on shakedown theory. J Geotech Geoenviron Eng 126(1):50–59. https://doi.org/10.1061/(ASCE)1090-0241(2000)126:1(50)

    Article  Google Scholar 

  13. Cristelo N, Glendinning S, Fernandes L, Pinto AT (2012) Effect of calcium content on soil stabilisation with alkaline activation. Constr Build Mater 29:167–174. https://doi.org/10.1016/j.conbuildmat.2011.10.049

    Article  Google Scholar 

  14. Das BM, Sivakugan N (2018) Principles of Foundation Engineering. Cengage Learning

    Google Scholar 

  15. Ding Y, Dai J, Shi C (2016) Mechanical properties of alkali-activated concrete: a state-of-the-art review. Constr Build Mater 127:68–79. https://doi.org/10.1016/j.conbuildmat.2016.09.121

    Article  CAS  Google Scholar 

  16. Duong TV, Tang AM, Cui YJ, Trinh VN, Dupla JC, Calon N, Canou J, Robinet A (2013) Effects of fines and water contents on the mechanical behavior of interlayer soil in ancient railway sub-structure. Soils Found 53(6):868–878. https://doi.org/10.1016/j.sandf.2013.10.006

    Article  Google Scholar 

  17. Duxson P, Fernández-Jiménez A, Provis JL, Lukey GC, Palomo A, Deventer JSJ (2007) Geopolymer technology: the current state of the art. J Mater Sci 42(9):2917–2933. https://doi.org/10.1007/s10853-006-0637-z

    Article  ADS  CAS  Google Scholar 

  18. Elipe M, Lopez-Querol S (2014) Aeolian sands: Characterization, options of improvement and possible employment in construction – The State-of-the-art. Constr Build Mater 73:728–739. https://doi.org/10.1016/j.conbuildmat.2014.10.008

    Article  Google Scholar 

  19. García-Lodeiro I, Palomo A, Fernández-Jiménez A (2015) An overview of the chemistry of alkali-activated cement-based binders. Handb Alkali-Activated Cem Mortars Concr. https://doi.org/10.1533/9781782422884.1.19

    Article  Google Scholar 

  20. Ghrieb A, Mitiche-Kettab R, Bali A (2014) Stabilization and utilization of dune sand in road engineering. Arab J Sci Eng 39(3):1517–1529. https://doi.org/10.1007/s13369-013-0721-z

    Article  CAS  Google Scholar 

  21. Gu L, Lv Q, Wang S, Xiang J, Guo L, Jiang J (2021) Effect of sodium silicate on the properties of loess stabilized with alkali-activated fly ash-based. Constr Build Mater 280:122515. https://doi.org/10.1016/j.conbuildmat.2021.122515

    Article  CAS  Google Scholar 

  22. Haider G, Sanjayan J, Ranjith PG (2014) Complete triaxial stress–strain curves for geopolymer. Constr Build Mater 69:196–202. https://doi.org/10.1016/j.conbuildmat.2014.07.058

    Article  Google Scholar 

  23. JTG 3430–2020, Test Methods of Soils for Highway Engineering. Profession Standard of the People’s Republic of China. Beijing

  24. Komljenović M, Baščarević Z, Bradić V (2010) Mechanical and microstructural properties of alkali-activated fly ash geopolymers. J Hazard Mater 181(1):35–42. https://doi.org/10.1016/j.jhazmat.2010.04.064

    Article  CAS  PubMed  Google Scholar 

  25. Krechowiecki-Shaw C, Jefferson I, Royal A, Ghataora G, Alobaidi I (2016) Degradation of soft subgrade soil from slow, large, cyclic heavy-haul road loads: a review. Can Geotech J 53(9):1435–1449. https://doi.org/10.1139/cgj-2015-0234

    Article  Google Scholar 

  26. Liu H, Liu H, Ding W, Xie H (2020) Dynamic characteristics of the rubber-tailings mixture based on dynamic triaxial test. Adv Mater Sci Eng 2020:6653385. https://doi.org/10.1155/2020/6653385

    Article  Google Scholar 

  27. Lao J, Huang B, Fang Y, Xu L, Dai J, Shah S (2023) Strain-hardening alkali-activated fly ash/slag composites with ultra-high compressive strength and ultra-high tensile ductility. Cem Concr Res 165:107075. https://doi.org/10.1016/j.cemconres.2022.107075

    Article  CAS  Google Scholar 

  28. Lao J, Xu L, Huang B, Dai J, Shah S (2022) Strain-hardening ultra-high-performance geopolymer concrete (UHPGC): matrix design and effect of steel fibers. Compos Commun 30:101081. https://doi.org/10.1016/j.coco.2022.101081

    Article  Google Scholar 

  29. Liu Z, Cai C, Liu F, Fan F (2016) Feasibility study of loess stabilization with fly ash-based geopolymer. J Mater Civil Eng 28:04016003. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001490

    Article  Google Scholar 

  30. Lopez-Querol S, Arias-Trujillo J, Elipe MGM, Matias-Sanchez A, Cantero B (2017) Improvement of the bearing capacity of confined and unconfined cement-stabilized aeolian sand. Constr Build Mater 153:374–384. https://doi.org/10.1016/j.conbuildmat.2017.07.124

    Article  Google Scholar 

  31. Lu Z, Fang R, Yao H, Hu Z, Liu J (2018) Evaluation and analysis of the traffic load-induced settlement of roads on soft subsoils with low embankments. Int J Geomech 18(6):04018043. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001123

    Article  Google Scholar 

  32. Lv Q, Jiang L, Ma B, Zhao B, Huo Z (2018) A study on the effect of the salt content on the solidification of sulfate saline soil solidified with an alkali-activated geopolymer. Constr Build Mater 176:68–74. https://doi.org/10.1016/j.conbuildmat.2018.05.013

    Article  CAS  Google Scholar 

  33. Malisetty RS, Indraratna B, Qi Y, Rujikiatkamjorn C (2023) Shakedown response of recycled rubber-granular waste mixtures under cyclic loading. Géotechnique 2023:1–6. https://doi.org/10.1680/jgeot.21.00040

    Article  Google Scholar 

  34. Nath P, Sarker PK (2015) Use of OPC to improve setting and early strength properties of low calcium fly ash geopolymer concrete cured at room temperature. Cem Concr Res 55:205–214. https://doi.org/10.1016/j.cemconcomp.2014.08.008

    Article  CAS  Google Scholar 

  35. Padmakumar GP, Srinivas K, Uday KV, Iyer KR, Pathak P, Keshava SM, Singh DN (2012) Characterization of aeolian sands from Indian desert. Eng Geol 139–140:38–49. https://doi.org/10.1016/j.enggeo.2012.04.005

    Article  Google Scholar 

  36. Palanidoss S, Banerjee S (2014) Factors affecting shear modulus degradation of cement treated clay. Soil Dyn Earthq Eng 65:181–188. https://doi.org/10.1016/j.soildyn.2014.06.013

    Article  Google Scholar 

  37. Phetchuay C, Horpibulsuk S, Arulrajah A, Suksiripattanapong C, Udomchai A (2016) Strength development in soft marine clay stabilized by fly ash and calcium carbide residue based geopolymer. Appl Clay Sci 127–128:134–142. https://doi.org/10.1016/j.clay.2016.04.005

    Article  CAS  Google Scholar 

  38. Phummiphan I, Horpibulsuk S, Sukmak P, Chinkulkijniwat A, Arulrajah A, Shen S (2016) Stabilisation of marginal lateritic soil using high calcium fly ash-based geopolymer. Road Mater Pavement Des 17(4):877–891. https://doi.org/10.1080/14680629.2015.1132632

    Article  CAS  Google Scholar 

  39. Provis J, Bernal S (2014) Geopolymers and related alkali-activated materials. Annu Rev Mater Res 44(1):299–327. https://doi.org/10.1146/annurev-matsci-070813-113515

    Article  ADS  CAS  Google Scholar 

  40. Rios S, Ramos C, Viana da Fonseca A, Cruz N, Rodrigues C (2019) Mechanical and durability properties of a soil stabilised with an alkali-activated cement. Eur J Environ Civ Eng 23(2):245–267. https://doi.org/10.1080/19648189.2016.1275987

    Article  Google Scholar 

  41. Sadeghzadegan R, Naeini S, Mirzaii A (2020) Effect of clay content on the small and mid to large strain shear modulus of an unsaturated sand. Eur J Environ Civ Eng 24(5):631–649. https://doi.org/10.1080/19648189.2017.1415169

    Article  Google Scholar 

  42. Sargent P, Hughes PN, Rouainia M, White ML (2013) The use of alkali activated waste binders in enhancing the mechanical properties and durability of soft alluvial soils. Eng Geol 152(1):96–108. https://doi.org/10.1016/j.enggeo.2012.10.013

    Article  Google Scholar 

  43. Santa R, Soares C, Riella H (2016) Geopolymers with a high percentage of bottom ash for solidification/immobilization of different toxic metals. J Hazard Mater 318:145–153. https://doi.org/10.1016/j.jhazmat.2016.06.059

    Article  CAS  Google Scholar 

  44. Shalabi FI, Mazher J, Khan K, Alsuliman M, Almustafa I, Mahmoud W, Alomran N (2019) Cement-Stabilized Waste Sand as Sustainable Construction Materials for Foundations and Highway Roads. Materials 12(4):600. https://doi.org/10.3390/ma12040600

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  45. Shariatmadari N, Mohebbi H, Javadi Akbar A (2021) Surface stabilization of soils susceptible to wind erosion using volcanic ash-based geopolymer. J Mater Civil Eng 33(12):04021345. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003981

    Article  CAS  Google Scholar 

  46. Shi C, Jiménez AF, Palomo A (2011) New cements for the 21st century: the pursuit of an alternative to Portland cement. Cem Concr Res 41(7):750–763. https://doi.org/10.1016/j.cemconres.2011.03.016

    Article  CAS  Google Scholar 

  47. Simpson DC, Evans TM (2016) Behavioral thresholds in mixtures of sand and kaolinite clay. J Geotech Geoenviron Eng 142(2):04015073. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001391

    Article  Google Scholar 

  48. Skinner L, Chae S, Benmore C, Wenk H, Monteiro P (2010) Nanostructure of calcium silicate hydrates in cements. Phys Rev Lett 104:195502. https://doi.org/10.1103/PhysRevLett.104.195502

    Article  ADS  CAS  PubMed  Google Scholar 

  49. Wang Q, Zhong X, Ma H, Wang S, Liu Z, Guo P (2020) Microstructure and reinforcement mechanism of lignin-modified loess. J Mater Civil Eng 32:04020319. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003422

    Article  CAS  Google Scholar 

  50. Wang S, Liu B, Zhang Q, Wen Q, Lu X, Xiao K, Ekberg C, Zhang S (2023) Application of geopolymers for treatment of industrial solid waste containing heavy metals: State-of-the-art review. J Cleaner Prod 390:136053. https://doi.org/10.1016/j.jclepro.2023.136053

    Article  CAS  Google Scholar 

  51. Wayal A, Ameta NK, Purohit DG (2012) Dune sand stabilization using bentonite and lime. J Eng Res Stud 3:58–60

    Google Scholar 

  52. Wei X, Liu H, Ku T (2021) Effects of plastic fines content on the engineering properties of cement-stabilized sands. Granul Matter 23(2):46. https://doi.org/10.1007/s10035-021-01114-5

    Article  CAS  Google Scholar 

  53. Werkmeister S, Dawson AR, Wellner F (2005) Permanent deformation behaviour of granular materials. Road Mater Pavement 6(1):31–51. https://doi.org/10.1080/14680629.2005.9689998

    Article  Google Scholar 

  54. Yao X, Zhang Z, Zhu H, Chen Y (2009) Geopolymerization process of alkali-metakaolinite characterized by isothermal calorimetry. Thermochim Acta 493:49–54. https://doi.org/10.1016/j.tca.2009.04.002

    Article  CAS  Google Scholar 

  55. Yip CK, Lukey GC, van Deventer JSJ (2005) The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res 35(9):1688–1697. https://doi.org/10.1016/j.cemconres.2004.10.042

    Article  CAS  Google Scholar 

  56. Yuan Y, Wang X, Shao H (2011) Study on impact compaction of aeolian sand subgrade and its effect evaluation. Adv Mater Res 378–379:370–373. https://doi.org/10.4028/www.scientific.net/AMR.378-379.370

    Article  Google Scholar 

  57. Yuan Y, Wang X, Zhou X (2008) Experimental research on compaction characteristics of aeolian sand. Front Architect Civil Eng China 2(4):359–365. https://doi.org/10.1007/s11709-008-0053-3

    Article  Google Scholar 

  58. Zeyad A, Magbool H, Tayeh B, Azevedo A, Abutaleb A, Hussain Q (2021) Production of geopolymer concrete by utilizing volcanic pumice dust. Case Stud Constr Mat 16:e00802. https://doi.org/10.1016/j.cscm.2021.e00802

    Article  Google Scholar 

  59. Zhang H, Yan X (2020) Study on the time effect of aeolian sand subgrade salinization in desert areas. Environ Earth Sci 79:387. https://doi.org/10.1007/s12665-020-09129-6

    Article  ADS  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the National Natural Science Foundation of China (Grant No.51708041), the Natural Science Foundation of Shaanxi Province, China (Grant No. 2022JM-228), and the Fundamental Research Funds for the Central Universities, CHD (Grant No. 300102210213).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Chen.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, R., Chen, H., Kang, Z. et al. Experimental study on cyclic behavior of aeolian sand stabilized with geopolymer and fines. Acta Geotech. 19, 669–683 (2024). https://doi.org/10.1007/s11440-023-02176-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-02176-w

Keywords

Navigation