Abstract
The interface shear behavior is quite beneficial for explaining the stress–strain response of geosynthetics. A series of interface direct shear tests are carried out between three distinct geomembranes and soils to understand their interfacial characteristics. To better comprehend varying trends of the interface shear parameters, three novel prediction models based on machine learning are further developed for the peak friction angles of geomembrane–soil interfaces. The results show that the shear stress–shear displacement curves are more susceptible to the variations of soils’ relative densities, particularly at the geomembrane–coarse sand interface. A conclusion of engineering significance is that coarse sand (D50 = 0.84 mm) is the most suitable material for the bedding layer of the composite geomembrane under σn ≥ 100 kPa and crushed stone (D50 = 7 mm) performs best in the perforated geomembranes-soil interface among the three types of soils. Upon comparing three predicting models for peak friction angles, a novel conclusion is gained that the gradient boosting regressor combined with Bayesian optimization is the most precise model. Then, a comprehensive formula for the peak friction angles containing normal stress, relative density, mean particle size and mean particle regularity is established.
This is a preview of subscription content, access via your institution.


















Data availability
Data will be made available on request.
Abbreviations
- D 50 :
-
Mean particle size of fill material (mm)
- S :
-
Particle sphericity (dimensionless)
- R :
-
Particle roundness (dimensionless)
- ρ :
-
Mean particle regularity (dimensionless)
- r max-in :
-
The radius of the largest inscribed sphere (mm)
- r min-cir :
-
The smallest circumscribed sphere (mm)
- δ p :
-
Peak friction angles (°)
- τ p :
-
Peak shear strength (N/m2)
- τ 50 :
-
Shear strength at horizontal displacement h = 50 mm (N/m2)
- σ n :
-
Normal stress (N/m2)
- D r :
-
Relative density (%)
- k τ :
-
Interface shear strength ratio (dimensionless)
- γ :
-
Strength loss ratio (dimensionless)
- BO-GBR:
-
Boosting regressor combined with Bayesian optimization
- AI:
-
Artificial Intelligence
- ML:
-
Machine Learning
- ANN:
-
Artificial neural network
- SVR:
-
Support vector regression
- GBR:
-
Gradient Boosting regression
- Ada:
-
AdaBoost regressor
- RF:
-
Random forest
- GM1:
-
Composite geomembrane
- GM2:
-
High-density polyethylene perforated geomembrane
- GM3:
-
Smooth high-density polyethylene geomembrane
- SP:
-
Coarse sand
- GP:
-
Crushed stone
- G7:
-
Crushed stone with the mean particle size (D50) of 7 mm
- G28:
-
Crushed stone with the mean particle size (D50) of 28 mm
- BO-Ada:
-
AdaBoost regressor combined with Bayesian optimization
- BO-RF:
-
Random forest combined with Bayesian optimization
- GS:
-
Grid search
- RS:
-
Random search
- MSE:
-
Mean square error
- RMSE:
-
Root-mean-square error
- MAPE:
-
Mean absolute percentage error
- LR:
-
Linear regressor
References
Abuel-Naga HM, Bouazza A (2014) Numerical experiment-artificial intelligence approach to develop empirical equations for predicting leakage rates through GM/GCL composite liners. Geotext Geomembr 42(3):236–245. https://doi.org/10.1016/j.geotexmem.2014.04.002
Afzali-Nejad A, Lashkari A, Farhadi B (2018) Role of soil inherent anisotropy in peak friction and maximum dilation angles of four sand-geosynthetic interfaces. Geotext Geomembr 46(6):869–881. https://doi.org/10.1016/j.geotexmem.2018.08.003
Afzali-Nejad A, Lashkari A, Shourijeh PT (2017) Influence of particle shape on the shear strength and dilation of sand-woven geotextile interfaces. Geotext Geomembr 45(1):54–66. https://doi.org/10.1016/j.geotexmem.2016.07.005
Araújo GLS, Sánchez NP, Palmeira EM, Almeida M, das G. G. de. (2022) Influence of micro and macroroughness of geomembrane surfaces on soil-geomembrane and geotextile-geomembrane interface strength. Geotext Geomembr 50(4):751–763. https://doi.org/10.1016/j.geotexmem.2022.03.015
Biabani MM, Indraratna B (2015) An evaluation of the interface behaviour of rail subballast stabilised with geogrids and geomembranes. Geotext Geomembr 43(3):240–249. https://doi.org/10.1016/j.geotexmem.2015.04.002
Bo Y, Liu Q, Huang X, Pan Y (2022) Real-time hard-rock tunnel prediction model for rock mass classification using CatBoost integrated with Sequential Model-Based Optimization. Tunn Undergr Space Technol. https://doi.org/10.1016/j.tust.2022.104448
Bo Y, Huang X, Pan Y, Feng Y, Deng P, Gao F, Liu P, Liu Q (2023) Robust model for tunnel squeezing using Bayesian optimized classifiers with partially missing database. Undergr Space 10:91–117. https://doi.org/10.1016/j.undsp.2022.11.001
Cañizal J, Bacas BM, Konietzky H (2015) Frictional behaviour of three critical geosynthetic interfaces. Geosynth Int 22(5):355–365. https://doi.org/10.1680/gein.15.00017
Chang JY, Feng SJ (2021) Dynamic shear behaviors of textured geomembrane/nonwoven geotextile interface under cyclic loading. Geotext Geomembr 49(2):388–398. https://doi.org/10.1016/j.geotexmem.2020.10.010
Chang JY, Feng SJ, Zheng QT, Shen Y (2021) Cyclic shear behavior of GMB/GCL composite liner. Geotext Geomembr 49(3):593–603. https://doi.org/10.1016/j.geotexmem.2020.11.006
Chao Z, Fowmes G (2021) Modified stress and temperature-controlled direct shear apparatus on soil-geosynthetics interfaces. Geotext Geomembr 49(3):825–841. https://doi.org/10.1016/j.geotexmem.2020.12.011
Chao Z, Fowmes G, Dassanayake S (2021) Comparative study of hybrid artificial intelligence approaches for predicting peak shear strength along soil-geocomposite drainage layer interfaces. Int J Geosynth Ground Eng 7(3):1–19
Chao Z, Shi D, Fowmes G, Xu X, Yue W, Cui P, Hu T, Yang C (2023) Artificial intelligence algorithms for predicting peak shear strength of clayey soil-geomembrane interfaces and experimental validation. Geotext Geomembr 51(1):179–198. https://doi.org/10.1016/j.geotexmem.2022.10.007
Cho G-C, Dodds J, Santamarina JC (2006) Particle shape effects on packing density, stiffness, and strength: natural and crushed sands. J Geotech Geoenviron 132(5):591–602. https://doi.org/10.1061/ASCE1090-02412006132:5591
Choudhary AK, Krishna AM (2016) Experimental investigation of interface behaviour of different types of granular soil/geosynthetics. Int J Geosynth 2(1):1–11. https://doi.org/10.1007/s40891-016-0044-8
Chou JS, Truong DN, Le TL, Truong TH, T. (2021) Bio-inspired optimization of weighted-feature machine learning for strength property prediction of fiber-reinforced soil. Expert Syst Appl 180:115042. https://doi.org/10.1016/j.eswa.2021.115042
Chou JS, Yang KH, Pampang JP, Pham AD (2015) Evolutionary metaheuristic intelligence to simulate tensile loads in reinforcement for geosynthetic-reinforced soil structures. Comput Geotech 66:1–15. https://doi.org/10.1016/j.compgeo.2015.01.001
Debnath P, Dey AK (2017) Prediction of laboratory peak shear stress along the cohesive soil-geosynthetic interface using artificial neural network. Geotech Geol Eng 35(1):445–461. https://doi.org/10.1007/s10706-016-0119-2
Dejong JT, Asce AM, Westgate ZJ (2009) Role of Initial state, material properties, and confinement condition on local and global soil-structure interface behavior. J Geotech Geoenviron 135(11):1646–1660. https://doi.org/10.1061/ASCE1090-02412009135:111646
Dove JE, Asce M, Jarrett JB, Asce SM (2002) Behavior of dilative sand interfaces in a geotribology framework. J Geotech Geoenviron. https://doi.org/10.1061/ASCE1090-02412002128:125
Dove JE, David Frost J (1999) Peak friction behavior of smooth geomembrane-particle interfaces. J Geotech Geoenviron 125(7):544–555. https://doi.org/10.1061/(ASCE)1090-0241(1999)125:7(544)
Dove JE, Frost JD (1996) A method for measuring geomembrane surface roughness. Geosynth Int 3(3):369–392. https://doi.org/10.1680/gein.3.0067
Eyo E, Abbey S (2022) Multiclass stand-alone and ensemble machine learning algorithms utilised to classify soils based on their physico-chemical characteristics. Rock Mech Rock Eng 14(2):603–615. https://doi.org/10.1016/j.jrmge.2021.08.011
Feng SJ, Shi JL, Shen Y, Chen HX, Chang JY (2021) Dynamic shear behavior of GMB/CCL interface under cyclic loading. Geotext Geomembr 49(3):657–668. https://doi.org/10.1016/j.geotexmem.2020.12.002
Ferreira FB, Vieira CS, Lopes ML (2015) Direct shear behaviour of residual soil-geosynthetic interfaces - influence of soil moisture content, soil density and geosynthetic type. Geosynth Int 22(3):257–272. https://doi.org/10.1680/gein.15.00011
Freund Y, Schapire RE (1997) J Comput Syst Sci (55)
Frost JD, Kim D, Lee SW (2012) Microscale geomembrane-granular material interactions. KSCE J Civ Eng 16(1):79–92. https://doi.org/10.1007/s12205-012-1476-x
Gajurel A, Chittoori B, Mukherjee PS, Sadegh M (2021) Machine learning methods to map stabilizer effectiveness based on common soil properties. Transp Geotech 27:100506. https://doi.org/10.1016/j.trgeo.2020.100506
Ghazavi M, Bavandpouri O (2022) Analytical solution for calculation of pull out force-deformation of geosynthetics reinforcing unsaturated soils. Geotext Geomembr 50(2):357–369. https://doi.org/10.1016/j.geotexmem.2021.12.005
Hang L, Gao YF, He J, Li C, Zhou YD, van Paassen LA (2022) Pullout behavior of biocement-geosynthetic reinforcement system: a parametric study. Acta Geotech 17:5429–5439. https://doi.org/10.1007/s11440-022-01687-2
He PF, Mu YH, Ma W, Huang YT, Dong JH (2021) Testing and modeling of frozen clay-concrete interface behavior based on large-scale shear tests. Adv Clim Change Res 12(1):83–94. https://doi.org/10.1016/j.accre.2020.09.010
He Z, Mo H, Siga A, Zou J (2019) Research on the parameters of nonlinear hyperbolic model for clay-geogrid interfaces based on large scale direct shear tests. Transport Geotech 18:39–45. https://doi.org/10.1016/j.trgeo.2018.11.002
Himi M, Casado I, Sendros A, Lovera R, Rivero L, Casas A (2018) Assessing preferential seepage and monitoring mortar injection through an earthen dam settled over a gypsiferous substrate using combined geophysical methods. Eng Geol 246:212–221. https://doi.org/10.1016/j.enggeo.2018.10.002
Ismail A, Jeng DS (2011) Modelling load-settlement behaviour of piles using high-order neural network (HON-PILE model). Eng Appl Artif Intell 24(5):813–821. https://doi.org/10.1016/j.engappai.2011.02.008
Karir D, Ray A, Kumar Bharati A, Chaturvedi U, Rai R, Khandelwal M (2022) Stability prediction of a natural and man-made slope using various machine learning algorithms. Transp Geotech 34:100745. https://doi.org/10.1016/j.trgeo.2022.100745
Kardani N, Aminpour M, Raja NA, M., Kumar, G., Bardhan, A., Nazem, M. (2022) Prediction of the resilient modulus of compacted subgrade soils using ensemble machine learning methods. Transport Geotech 36:100827. https://doi.org/10.1016/j.trgeo.2022.100827
Lashkari A, Jamali V (2021) Global and local sand-geosynthetic interface behaviour. Geotechnique 71(4):346–367. https://doi.org/10.1680/jgeot.19.P.109
Lee KM, Manjunath VR (2000) Soil-geotextile interface friction by direct shear tests. Can Geotech J 37(1):238–252. https://doi.org/10.1139/t99-124
Lingsi ML, Dietzii MS (2005) The peak strength of sand-steel interfaces and the role of dilation. Soils Found 45(6):1–14. https://doi.org/10.3208/sandf.45.1
Liu Q, Wang X, Huang X, Yin X (2020) Prediction model of rock mass class using classification and regression tree integrated AdaBoost algorithm based on TBM driving data. Tunn Undergr Space Technol 106:103595. https://doi.org/10.1016/j.tust.2020.103595
Liu Y, Deng A, Jaksa M (2019) Failure mechanisms of geocell walls and junctions. Geotext Geomembr 47(2):104–120. https://doi.org/10.1016/j.geotexmem.2018.11.003
Lopes PC, Lopes MP (2001) Shear behaviour of geosynthetics in the inclined plane test - Influence of soil particle size and geosynthetic structure. Geosynth Int 8(4):327–342. https://doi.org/10.1680/gein.8.0198
Lu X, Jordan KE, Wheeler MF, Pyzer-Knapp EO, Benatan M (2022) Bayesian optimization for field-scale geological carbon storage. Engineering. https://doi.org/10.1016/j.eng.2022.06.011
Mahmoodzadeh A, Mohammadi M, Farid Hama Ali H, Nariman AS, Hashim IH, Gharrib Noori KM (2021) Dynamic prediction models of rock quality designation in tunneling projects. Geotech Transp. https://doi.org/10.1016/j.trgeo.2020.100497
Markou IN (2018) A study on geotextile—sand interface behavior based on direct shear and triaxial compression tests. Int J Geosynth Ground Eng 4(8):1–15. https://doi.org/10.1007/s40891-017-0121-7
Meng X, Jiang Q, Han J, Liu R (2022) Experimental investigation of geogrid-reinforced sand cushions for rock sheds against rockfall impact. Transp Geotech 33:100717. https://doi.org/10.1016/j.trgeo.2022.100717
Miranda-Valdez IY, Viitanen L, Intyre J, mac, Puisto, A., Koivisto, J., Alava, M. (2022) Predicting effect of fibers on thermal gelation of methylcellulose using Bayesian optimization. Carbohydr Polym 298(15):119921. https://doi.org/10.1016/j.carbpol.2022.119921
Namjoo AM, Jafari K, Tou h, V. (2020) Effect of particle size of sand and surface properties of reinforcement on sand-geosynthetics and sand-carbon fiber polymer interface shear behavior. Geotech Transp. https://doi.org/10.1016/j.trgeo.2020.100403
Namjoo AM, Baniasadi M, Jafari K, Salam S, Tou M, h, M., Tou h, V. (2022) Studying effects of interface surface roughness, mean particle size, and particle shape on the shear behavior of sand-coated CFRP interface. Transp Geotech. https://doi.org/10.1016/j.trgeo.2022.100841
Pant A, Ramana G (2022) Prediction of pullout interaction coefficient of geogrids by extreme gradient boosting model. Geotext Geomembr 50(6):1188–1198. https://doi.org/10.1016/j.geotexmem.2022.08.003
Peng Y, Ding X, Zhang Y, Wang C, Wang C (2021) Evaluation of the particle breakage of calcareous sand based on the detailed probability of grain survival: an application of repeated low-energy impacts. Soil Dyn Earthq Eng 141:106497. https://doi.org/10.1016/j.soildyn.2020.106497
Pietruszczak S, Mroz Z (2001) On failure criteria for anisotropic cohesive-frictional materials. Int J Numer Anal Methods Geomech 25(5):509–524. https://doi.org/10.1002/nag.141
Puri N, Prasad HD, Jain A (2018) Prediction of geotechnical parameters using machine learning techniques. Procedia Computer Science 125:509–517. https://doi.org/10.1016/j.procs.2017.12.066
Qi C, Tang X (2018) Slope stability prediction using integrated metaheuristic and machine learning approaches: A comparative study. Comput Ind Eng 118:112–122. https://doi.org/10.1016/j.cie.2018.02.028
Raja MNA, Shukla SK (2021) Predicting the settlement of geosynthetic-reinforced soil foundations using evolutionary artificial intelligence technique. Geotext Geomembr 49(5):1280–1293. https://doi.org/10.1016/j.geotexmem.2021.04.007
Rezania M, Javadi AA (2007) A new genetic programming model for predicting settlement of shallow foundations. Can Geotech J 44(12):1462–1473. https://doi.org/10.1139/T07-063
Shahin MA, Holger M, R., Jaksa, M. B. (2002) Predicting settlement of shallow foundations using neural networks. J Geotech Geoenviron 128(9):785–793. https://doi.org/10.1061/ASCE1090-02412002128:9785
Tan D, Suvarna M, hee Tan, Y., Li, J., Wang, X. (2021) A three-step machine learning framework for energy profiling, activity state prediction and production estimation in smart process manufacturing. Appl Energy 291:116808. https://doi.org/10.1016/j.apenergy.2021.116808
Tiwari N, Satyam N (2021) Coupling effect of pond ash and polypropylene fiber on strength and durability of expansive soil subgrades: an integrated experimental and machine learning approach. Rock Mech Rock Eng 13(5):1101–1112. https://doi.org/10.1016/j.jrmge.2021.03.010
Tay T, Osorio C (2022) Bayesian optimization techniques for high-dimensional simulation-based transportation problems. Transport RES B-METH 164:210–243. https://doi.org/10.1016/j.trb.2022.08.009
Vangla P, Latha Gali M (2016) Effect of particle size of sand and surface asperities of reinforcement on their interface shear behaviour. Geotext Geomembr 44(3):254–268. https://doi.org/10.1016/j.geotexmem.2015.11.002
Vafaei N, Fakharian K, Sadrekarimi A (2021) Sand-sand and sand-steel interface grain-scale behavior under shearing. Geotech Transp. https://doi.org/10.1016/j.trgeo.2021.100636
Wang X, Li Z, Shafieezadeh A (2021) Seismic response prediction and variable importance analysis of extended pile-shaft-supported bridges against lateral spreading: Exploring optimized machine learning models. Eng Struct 236:112142. https://doi.org/10.1016/j.engstruct.2021.112142
Wasti Y, Bahadmr Z, ZdukZguk OG (2001) Geomembrane-geotextile interface shear properties as determined by inclined board and direct shear box tests. In Ymldmz Wasti). Geotext Geomembr 19(1):45–57. https://doi.org/10.1016/S0266-1144(00)00002-9
Dongxing W, Jiaye Z, Gang Z (2022) Comprehensive evaluation on magnesium potassium phosphate cement-mineral additive stabilized waste sludge. Mar Georesources Geotechnol. https://doi.org/10.1080/1064119X.2022.2146553
Xie M, Zheng J, Cao W, Dong X, Yang T, Cui L (2022) Mesoscopic pullout behavior of geosynthetics-sand-clay layered reinforced structures using discrete element method. Acta Geotech 17(6):2533–2552. https://doi.org/10.1007/s11440-021-01422-3
Yang W, He J, Liu L, Yang H (2022) Testing the shearing creep of composite geomembranes-cushion interface and its empirical model. Soils Found 62(6):101236. https://doi.org/10.1016/j.sandf.2022.101236
Yamakage S, Kaneko H (2022) Design of adaptive soft sensor based on Bayesian optimization. Case Studies Environ Eng Sci 6:100237. https://doi.org/10.1016/j.cscee.2022.100237
Zhang Q, Hu W, Liu Z, Tan J (2020) TBM performance prediction with Bayesian optimization and automated machine learning. Tunn Undergr Space Technol 103:103493. https://doi.org/10.1016/j.tust.2020.103493
Zhang W, Wu C, Zhong H, Li Y, Wang L (2021) Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization. Geosci Front 12(1):469–477. https://doi.org/10.1016/j.gsf.2020.03.007
Zheng G, Zhang W, Zhou H, Yang P (2020) Multivariate adaptive regression splines model for prediction of the liquefaction-induced settlement of shallow foundations. Soil Dyn Earthq Eng 132:106097. https://doi.org/10.1016/j.soildyn.2020.106097
Acknowledgements
This work was supported by the National Natural Science Foundation of China (No. 52079098), the Fundamental Research Funds for the Central Universities (Wuhan University) (No. 2042022kf1219) and Open Research Fund of State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences (Grant No. SKLGME021004), the Key Research and Development Program of Wuhan City (No.2022022202015074).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Feng, Y., Wang, D. Shear behaviors and peak friction angle predictions of three critical geomembrane–soil interfaces. Acta Geotech. (2023). https://doi.org/10.1007/s11440-023-02082-1
Received:
Accepted:
Published:
DOI: https://doi.org/10.1007/s11440-023-02082-1