Skip to main content
Log in

A DEM-based Euler–Lagrange model for motion of particle–fluid two-phase mixtures

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The effects of interstitial fluid on the behaviors of two approaching particles play an important role in the rheology of granular–fluid mixtures. In this paper, an Euler–Lagrange model is developed to study the effects of interstitial fluid on the frictional behaviors of particle contacts which is resolved by the discrete element method (DEM). A formulation of the friction coefficient for immersed particle contacts, involving the effects of interstitial fluid viscosity and pressure, is proposed based on the results of a laboratory experiment. The enhancement effect of the porosity of granular materials on the inter-particle friction coefficient is taken into account. For the inter-particle normal contact force, an existing empirical formula of the coefficient of restitution for immersed particle collisions is adopted. The model is verified in the laboratory experiment of collisions between a single particle and a solid wall in both air and water. The model is further validated by simulating subaerial granular landslides into water down an inclined slope. Without the effects of interstitial fluid on the inter-particle friction coefficient, the propagation velocity of subaerial landslides intruding into the water and the generated tsunami wave is underestimated. Moreover, if the enhancement effect of the landslide porosity is excluded, the propagation velocity of the landslide and the generated wave are overestimated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available upon reasonable request to the authors.

Abbreviations

\(C_{{\text{D}}}\) :

Drag coefficient

\(d\) :

Particle diameter

\(e\) :

Coefficient of restitution

\(E\) :

Young’s modulus

\({\mathbf{F}}\) :

Force

\({\mathbf{g}}\) :

Gravitational acceleration

\(i,j\) :

Particle index

\(I\) :

Moment of inertia

\(m\) :

Mass

\({\mathbf{M}}\) :

Torque

\({\mathbf{n}}\) :

Unit normal vector

\(N\) :

Neighboring particle number

\({\mathbf{r}}\) :

Force arm

\(\gamma_{ij} ,\gamma^{\prime}_{ij}\) :

Damping viscosity subjected to the normal and tangential contact force

\(\mu\) :

Friction coefficient

\(R\) :

Particle radius

\({\text{Re}}\) :

Reynolds number

\({\text{St}}\) :

Particle Stokes number

\(t\) :

Time

\({\mathbf{u}}\) :

Velocity

\(V\) :

Particle volume

\(\alpha\) :

Volume fraction

\({{\varvec{\upvarepsilon}}}\) :

Relative displacement

\({{\varvec{\upomega}}}\) :

Angular velocity

\(\rho\) :

Density

\(\upsilon\) :

Poisson’s ratio

\(\nu\) :

Kinetic viscosity

\(\Delta t\) :

Time step

\(k_{ij} ,k^{\prime}_{ij}\) :

Spring stiffness subjected to the normal and tangential contact force

\(\mu^{\prime}\) :

Coefficient of rolling friction

\({\text{N,T}}\) :

Normal and tangential components of contact parameters

\({\text{f,p}}\) :

The continuous phase and the granular particles

References

  1. Ai J, Chen J-F, Rotter JM, Ooi JY (2011) Assessment of rolling resistance models in discrete element simulations. Powder Technol 206(3):269–282

    Article  CAS  Google Scholar 

  2. Anderson T B, Jackson R (1967) Fluid mechanical description of fluidized beds. Equations of motion. Ind Eng Chem Fundam 6(4):527–539

  3. Berzi D, Fraccarollo L (2015) Turbulence locality and granular like fluid shear viscosity in collisional suspensions. Phys Rev Lett 115(19):194501

    Article  ADS  PubMed  Google Scholar 

  4. Capecelatro J, Desjardins O (2013) An Euler-Lagrange strategy for simulating particle-laden flows. J Comput Phys 238:1–31

    Article  ADS  MathSciNet  Google Scholar 

  5. Cassar C, Nicolas M, Pouliquen O (2005) Submarine granular flows down inclined planes. Phys Fluids 17(10):103301

    Article  ADS  Google Scholar 

  6. Chauchat J, Cheng Z, Nagel T, Bonamy C, Hsu T-J (2017) SedFoam-2.0: a 3-D two-phase flow numerical model for sediment transport. Geosci. Model Dev 10(12):4367–4392

  7. Chen F, Xiong H, Wang X, Yin Z-Y (2023) Transmission effect of eroded particles in suffusion using the CFD-DEM coupling method. Acta Geotech 18(1):335–354

    Article  Google Scholar 

  8. Chen X, Li Y, Niu X, Li M, Chen D, Yu X (2011) A general two-phase turbulent flow model applied to the study of sediment transport in open channels. Int J Multiphase Flow 37(9):1099–1108

    Article  CAS  Google Scholar 

  9. Cheng Z, Chauchat J, Hsu T-J, Calantoni J (2018) Eddy interaction model for turbulent suspension in Reynolds-averaged Euler-Lagrange simulations of steady sheet flow. Adv Water Resour 111:435–451

    Article  ADS  Google Scholar 

  10. Costa P, Boersma BJ, Westerweel J, Breugem WP (2015) Collision model for fully resolved simulations of flows laden with finite-size particles. Phys Rev E Stat Nonlin Soft Matter Phys 92(5):053012

    Article  ADS  MathSciNet  PubMed  Google Scholar 

  11. Davis RH, Serayssol J-M, Hinch EJ (1986) The elastohydrodynamic collision of two spheres. J Fluid Mech 163:479–497

    Article  ADS  Google Scholar 

  12. Divoux T, Geminard JC (2007) Friction and dilatancy in immersed granular matter. Phys Rev Lett 99(25):258301

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Drake TG, Calantoni J (2001) Discrete particle model for sheet flow sediment transport in the nearshore. J Geophys Res Oceans 106(C9):19859–19868

  14. Drew DA (1983) Continuum modeling of two-phase flows. In Theory of Dispersed Multiphase Flow (pp. 173–190). Academic Press, New York

  15. Fernandez N (2015) From tribology to rheology: Impact of interparticle friction in the shear thickening of non-Brownian suspensions (Doctoral dissertation, ETH Zurich)

  16. Fernandez N, Mani R, Rinaldi D, Kadau D, Mosquet M, Lombois-Burger H, Cayer-Barrioz J, Herrmann HJ, Spencer ND, Isa L (2013) Microscopic mechanism for shear thickening of non-Brownian suspensions. Phys Rev Lett 111(10):108301

    Article  ADS  PubMed  Google Scholar 

  17. Finn JR, Li M, Apte SV (2016) Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer. J Fluid Mech 796:340–385

    Article  ADS  MathSciNet  CAS  Google Scholar 

  18. Fleischmann J, Serban R, Negrut D, Jayakumar P (2016) On the importance of displacement history in soft-body contact models. J Comput Nonlinear Dyn 11(4):044502

    Article  Google Scholar 

  19. Gago PA, Raeini AQ, King P (2020) A spatially resolved fluid-solid interaction model for dense granular packs/soft-sand. Adv Water Resour 136:103454

    Article  Google Scholar 

  20. Gidaspow D (1994) Multiphase flow and fluidization: continuum and kinetic theory descriptions. Academic Press, New York.

  21. Gondret P, Lance M, Petit L (2002) Bouncing motion of spherical particles in fluids. Phys Fluids 14(2):643–652

    Article  ADS  CAS  Google Scholar 

  22. Gonzalez-Ondina JM, Fraccarollo L, Liu PLF (2018) Two-level, two-phase model for intense, turbulent sediment transport. J Fluid Mech 839:198–238

    Article  ADS  MathSciNet  CAS  Google Scholar 

  23. Goswami PS, Kumaran V (2010) Particle dynamics in a turbulent particle–gas suspension at high Stokes number. Part 1. Velocity and acceleration distributions. J Fluid Mech 646:59–90

    Article  ADS  Google Scholar 

  24. Hager A, Kloss C, Pirker S, Goniva C (2014) Parallel resolved open source CFD-DEM: method, validation and application. J Comput Multiphase Flows 6(1):13–27

    Article  Google Scholar 

  25. He K, Shi H, Yu X (2022) Effects of interstitial water on collapses of partially immersed granular columns. Phys Fluids 34(2):023306

    Article  ADS  CAS  Google Scholar 

  26. Hu Z, Li JZ, Zhang YD, Yang ZX, Liu JK (2022) A CFD–DEM study on the suffusion and shear behaviors of gap-graded soils under stress anisotropy. Acta Geotech. https://doi.org/10.1007/s11440-022-01755-7

    Article  Google Scholar 

  27. Jamali S, Brady JF (2019) Alternative frictional model for discontinuous shear thickening of dense suspensions: hydrodynamics. Phys Rev Lett 123(13):138002

    Article  ADS  CAS  PubMed  Google Scholar 

  28. Joseph GG, Hunt ML (2004) Oblique particlewall collisions in a liquid. J Fluid Mech 510:71–93

    Article  ADS  CAS  Google Scholar 

  29. Joseph GG, Zenit R, Hunt ML, Rosenwinkel AM (2001) Particle–wall collisions in a viscous fluid. J Fluid Mech 433:329–346

    Article  ADS  CAS  Google Scholar 

  30. Kempe T, Fröhlich J (2012) Collision modelling for the interface-resolved simulation of spherical particles in viscous fluids. J Fluid Mech 709:445–489

    Article  ADS  MathSciNet  CAS  Google Scholar 

  31. Kong Y, Guan M, Li X, Zhao J, Yan H (2022) Bi‐linear laws govern the impacts of debris flows, debris avalanches, and rock avalanches on flexible barrier. J Geophys Res Earth Surf 127:11

  32. Kong Y, Guan M, Li X, Zhao J, Yan H (2022) How flexible, slit and rigid barriers mitigate two‐phase geophysical mass flows: a numerical appraisal. J Geophys Res Earth Surf 127:6

  33. Kong Y, Li X, Zhao J (2021) Quantifying the transition of impact mechanisms of geophysical flows against flexible barrier. Eng Geol 289:106188

    Article  Google Scholar 

  34. Kong Y, Li X, Zhao J, Guan M (2023) Load–deflection of flexible ring-net barrier in resisting debris flows. Géotechnique. https://doi.org/10.1680/jgeot.22.00135

    Article  Google Scholar 

  35. Kruggel-Emden H, Wirtz S, Scherer V (2008) A study on tangential force laws applicable to the discrete element method (DEM) for materials with viscoelastic or plastic behavior. Chem Eng Sci 63(6):1523–1541

    Article  CAS  Google Scholar 

  36. Krzaczek M, Nitka M, Tejchman J (2023) Modelling hydraulic and capillary-driven two-phase fluid flow in unsaturated concretes at the meso-scale with a unique coupled DEM-CFD technique. Int J Numer Anal Methods Geomech 47(1):23–53

    Article  CAS  Google Scholar 

  37. Lacaze L, Bouteloup J, Fry B, Izard E (2021) Immersed granular collapse: from viscous to free-fall unsteady granular flows. J Fluid Mech 912:A15

    Article  ADS  MathSciNet  CAS  Google Scholar 

  38. Lain S, Sommerfeld M (2003) Turbulence modulation in dispersed two-phase flow laden with solids from a Lagrangian perspective. Int J Heat Fluid Flow 24(4):616–625

    Article  Google Scholar 

  39. Lee C-H, Huang Z (2021) Multi-phase flow simulation of impulsive waves generated by a sub-aerial granular landslide on an erodible slope. Landslides 18(3):881–895

    Article  Google Scholar 

  40. Lee C-H, Huang Z (2022) Effects of grain size on subaerial granular landslides and resulting impulse waves: experiment and multi-phase flow simulation. Landslides 19(1):137–153

    Article  Google Scholar 

  41. Liang L, Yu X, Bombardelli F (2017) A general mixture model for sediment laden flows. Adv Water Resour 107:108–125

    Article  ADS  Google Scholar 

  42. Liu D, Liu X, Fu X, Wang G (2016) Quantification of the bed load effects on turbulent open-channel flows. J Geophys Res Earth Surf 121(4): 767–789

  43. Maurin R, Chauchat J, Chareyre B, Frey P (2015) A minimal coupled fluid-discrete element model for bedload transport. Phys Fluids 27(11):113302

    Article  ADS  Google Scholar 

  44. Mindlin RD (1953) Elastic spheres in contact under varying oblique forces. J Appl Mech 20(3):327–344

    Article  MathSciNet  Google Scholar 

  45. Pahtz T, Duran O (2020) Unification of Aeolian and Fluvial sediment transport rate from granular physics. Phys Rev Lett 124(16):168001

    Article  ADS  CAS  PubMed  Google Scholar 

  46. Rackl M, Hanley KJ (2017) A methodical calibration procedure for discrete element models. Powder Technol 307:73–83

    Article  CAS  Google Scholar 

  47. Rauter M (2021) The compressible granular collapse in a fluid as a continuum: validity of a Navier-Stokes model with, -rheology. J Fluid Mech 915:A87

    Article  ADS  MathSciNet  CAS  Google Scholar 

  48. Schiller L, Naumann A (1935) A drag coefficient correlation. Z Ver Dtsch Ing 77:318–320

    Google Scholar 

  49. Schmeeckle M W (2014) Numerical simulation of turbulence and sediment transport of medium sand. J Geophys Res Earth Surf 119(6):1240–1262

  50. Schmeeckle MW, Nelson JM, Pitlick J, Bennett JP (2001) Interparticle collision of natural sediment grains in water. Water Resour Res 37(9):2377–2391

    Article  ADS  Google Scholar 

  51. Shan T, Zhao J (2014) A coupled CFD-DEM analysis of granular flow impacting on a water reservoir. Acta Mech 225(8):2449–2470

    Article  MathSciNet  Google Scholar 

  52. Shi H, Dong P, Yu X, Zhou Y (2021) A theoretical formulation of dilatation/contraction for continuum modelling of granular flows. J Fluid Mech 916:A56

    Article  ADS  MathSciNet  CAS  Google Scholar 

  53. Shi H, Si P, Dong P, Yu X (2019) A two-phase SPH model for massive sediment motion in free surface flows. Adv Water Resour 129:80–98

    Article  ADS  Google Scholar 

  54. Shi H, Yu X (2015) An effective Euler-Lagrange model for suspended sediment transport by open channel flows. Int J Sediment Res 30(4):361–370

    Article  Google Scholar 

  55. Si P, Shi H, Yu X (2019) A general frictional-collisional model for dense granular flows. Landslides 16(3):485–496

    Article  Google Scholar 

  56. Uhlmann M (2008) Interface-resolved direct numerical simulation of vertical particulate channel flow in the turbulent regime. Phys Fluids 20(5):053305

    Article  ADS  Google Scholar 

  57. Utili S, Zhao T, Houlsby GT (2015) 3D DEM investigation of granular column collapse: evaluation of debris motion and its destructive power. Eng Geol 186:3–16

    Article  Google Scholar 

  58. Viroulet S, Sauret A, Kimmoun O, Kharif C (2013) Granular collapse into water: toward tsunami landslides. J Visualization 16(3):189–191

    Article  Google Scholar 

  59. Wu L, Gong M, Wang J (2018) Development of a DEM–VOF model for the turbulent free-surface flows with particles and its application to stirred mixing system. Ind Eng Chem Res 57(5):1714–1725

    Article  CAS  Google Scholar 

  60. Xu S, Zhu Y, Cao H, Sun H, Cai Y, Wu J (2022) Studying the soil column formation in soft soil improved by vacuum preloading via coupled scale-up CFD-DEM simulations. Int J Numer Anal Methods Geomech 46(7):1272–1291

    Article  Google Scholar 

  61. Yang FL, Hunt ML (2006) Dynamics of particle-particle collisions in a viscous liquid. Phys Fluids 18(12):121506

    Article  ADS  Google Scholar 

  62. Zeng Z, Fu J, Feng YT, Wang M (2023) Revisiting the empirical particle-fluid coupling model used in DEM-CFD by high-resolution DEM-LBM-IMB simulations: a 2D perspective. Int J Numer Anal Methods Geomech 47(5):862–879

    Article  Google Scholar 

  63. Zhang J, Fan L-S, Zhu C, Pfeffer R, Qi D (1999) Dynamic behavior of collision of elastic spheres in viscous fluids. Powder Technol 106(1–2):98–109

    Article  CAS  Google Scholar 

  64. Zhao T, Dai F, Xu NW (2017) Coupled DEM-CFD investigation on the formation of landslide dams in narrow rivers. Landslides 14(1):189–201

    Article  Google Scholar 

Download references

Funding

This research is jointly supported by the National Natural Science Foundation of China (NSFC) under grant Nos. 41961144014 and 12102493, and the Science and Technology Development Fund, Macau SAR (File No. 0090/2020/A2, 0050/2020/AMJ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiping Yu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Shi, H. & Yu, X. A DEM-based Euler–Lagrange model for motion of particle–fluid two-phase mixtures. Acta Geotech. 19, 971–989 (2024). https://doi.org/10.1007/s11440-023-02054-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-02054-5

Keywords

Navigation