Skip to main content

Advertisement

Log in

The effect of diatom content on the physical, electrical, and mechanical properties of soils

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Biological-formed fossilized diatom sediments have unique physical, electrical, and mechanical properties due to the shape, internal open porosity, and brittleness of the individual particles. The presence of diatoms strongly influences the overall behavior of soils. However, engineers and researchers find this influence challenging to quantify because measuring fossilized diatom content is elusive. This paper uses simple physical, electromagnetic, and mechanical engineering measurements to characterize the response of the artificial soils prepared with known amounts of fossilized diatoms under different pore-chemistry fluid and mechanical environments. Soils with high fossilized diatom content tend to retain high quantities of water even under high NaCl-concentration pore fluid. This response results from the internal porosity and is not a function of electrical forces on the particle surface. Furthermore, internal porosity governs electrical and mechanical properties under different pore fluid environments. Despite having elevated Liquid Limits, soils with high fossilized diatoms content do not deform while drying and changing pore fluid salt concentration. However, fossilized diatoms are brittle and offer high compressibility and low particle crushing stress (around 2–4 MPa). Our results show that simple physical and index tests can help assess the effect of fossilized diatoms’ in soils, and provide a framework to predict the engineering properties of natural soils containing a wide range of fossilized diatoms even when diatom content cannot be precisely measured.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated and analyzed during this current study are available from the corresponding author on reasonable request.

References

  1. Akin I, Likos W (2014) Specific surface area of clay using water vapor and EGME sorption methods. Geotech Test J 37(6):1016–1027

    Article  Google Scholar 

  2. ASTM (2017) C131: Standard test method for resistance to degradation of small-size coarse aggregate by Abrasion and Impact in the Los Angeles Machine. ASTM International, West Conshohocken, PA

  3. ASTM (2018) C2435: Standard Test Method for Determination of Pore Volume and Pore Volume Distribution of Soil and Rock by Mercury Intrusion Porosimetry. ASTM International, West Conshohocken, PA

  4. ASTM (2018) D4318: Standard test methods for liquid limit, plastic limit, and plasticity index of soils. ASTM International, West Conshohocken, PA

  5. ASTM (2018) D4404: Standard test method for determination of pore volume and pore volume distribution of soil and rock by mercury intrusion porosimetry. ASTM International, West Conshohocken, PA

  6. ASTM (2018) D4943: Standard test method for shrinkage factors of cohesive soils by the water submersion method. ASTM International, West Conshohocken, PA

  7. ASTM (2019) D150: Standard test methods for AC loss characteristics and permittivity (dielectric constant) of solid electrical insulation. ASTM International, West Conshohocken, PA

  8. ASTM (2020) C2435: standard test methods for one-dimensional consolidation properties of soils using incremental loading. ASTM International, West Conshohocken, PA

  9. ASTM (2021) D7928: standard test method for particle-size distribution (gradation) of fine-grained soils using the sedimentation (hydrometer) analysis. ASTM International, West Conshohocken, PA

  10. ASTM (2023) D5550: standard test method for specific gravity of soil solids by gas pycnometer. ASTM International, West Conshohocken, PA

  11. Attia AM, Fratta D, Bassiouni Z (2008) Irreducible water saturation from capillary pressure and electrical resistivity measurements. Oil Gas Sci Technol-Rev de l’IFP 63(2):203–217

    Article  Google Scholar 

  12. Aydin AC, Gul R (2007) Influence of volcanic originated natural materials as additives on the setting time and some mechanical properties of concrete. Constr Build Mater 21(6):1277–1281

    Article  Google Scholar 

  13. Azo Materials (2020) Company website: Silica - Silicon Dioxide (SiO2) https://www.azom. com/properties.aspx?ArticleID=1114 Accessed 27 May 2020

  14. Been K, Sills GC (1981) Self-weight consolidation of soft soils - an experimental and theoretical-study. Geotechnique 31(4):519–535

    Article  Google Scholar 

  15. Brady NC (1984) The nature properties of soils. 9th Edition, Collier Macmillan Canada, Inc

  16. Bryant WR, Rack FR (1990) 17. Consolidation characteristic of Weddell sea sediments: results of ODP LEP 113. Proc ODP Sci Results 113:211–223

    Google Scholar 

  17. Burger CA, Shackelford CD (2001) Evaluating dual porosity of pelletized diatomaceous earth using bimodal soil–water characteristic curve functions. Can Geotech J 38(1):53–66

    Article  Google Scholar 

  18. Caicedo B, Mendoza C, Lizcano A, Lopez-Caballero F (2019) Some contributions to mechanical behaviors of lacustrine deposit in Bogotá, Colombia. J Rock Mech Geotech Eng 11(4):837–849

    Article  Google Scholar 

  19. Caicedo B, Zuluaga D, Slebi C (2019) Effects of micro-features of fossil diatom on the macroscopic behaviour of soils. Géotech Lett 9(4):322–327

    Article  Google Scholar 

  20. Cartnick K, Merwin R (2004) Franklin lakes: creating a permanent solution for a limited seasonal need. J Am Water Works Assoc 96(9):34–37

    Article  Google Scholar 

  21. Cascante G, Santamarina JC (1996) Interparticle contact behavior and wave propagation. J Geotech Eng 122(10):831–839

    Article  Google Scholar 

  22. Cerato AB, Lutenegger AJ (2002) Determination of surface area of fine-grained soils by the ethylene glycol monoethyl ether (EGME) method. Geotech Test J 25(3):315–321

    Article  Google Scholar 

  23. Chen J, Anandarajah A, Inyang H (2000) Pore fluid properties and compressibility of kaolinite. J Geotech Geoenviron Eng 126(9):798–807

    Article  Google Scholar 

  24. Chester R, Elderfield H (1968) The infrared determination of opal in siliceous deep-sea sediments. Geochim Cosmochim Acta 32(10):1128–1140

    Article  Google Scholar 

  25. Cloyd RA, Dickinson A (2005) Effects of growing media containing diatomaceous earth on the fungus gnat Bradysia sp. nr. coprophila (Lintner) (Diptera: Sciaridae). HortScience 40(6):1806–1809

  26. Day RW (1995) Engineering properties of diatomaceous fill. J Geotech Eng 121(12):908–910

    Article  Google Scholar 

  27. DeMaster DJ (1981) The supply and accumulation of silica in the marine environment. Geochem Cosmochim Acta 45(10):1715–1732

    Article  Google Scholar 

  28. Diaz-Rodríguez JA, Gonzalez-Rodriguez R (2013) Influence of diatom microfossils on soil compressibility. In: 18th International conference on soil mechanics and geotechnical engineering, 325–328

  29. Diaz-Rodriguez JA, Leroueil S, Aleman JD (1992) Yielding of Mexico City clay and other natural clays. J Geotech Eng 118(7):981–995

    Article  Google Scholar 

  30. Dixit S, Van Cappellen P (2002) Surface chemistry and reactivity of biogenic silica. Geochim Cosmochim Acta 66(14):2559–2568

    Article  Google Scholar 

  31. Eggimann DW, Betzer PR (1976) Decomposition and analysis of refractory oceanic suspended materials. Anal Chem 48(6):886–890

    Article  Google Scholar 

  32. Eggimann DW, Manheim TF, Betzer RP (1980) Dissolution and analysis of amorphous silica in marine sediments. J Sediment Petrol 50(1):215–225

    Google Scholar 

  33. Einsele G (1990) Deep-reaching liquefaction potential of marine slope sediments as a prerequisite for gravity mass flows? (results from the DSDP). Mar Geol 91(4):267–279

    Article  Google Scholar 

  34. Eisma D, Van der Gaast SJ (1971) Determination of opal in marine sediments by X-ray diffraction. Neth J Sea Res 5(3):382–389

    Article  Google Scholar 

  35. Escalera E, Garcia G, Teran R, Tegman R, Antti ML, Oden M (2015) The production of porous brick material from diatomaceous earth and Brazil nut shell ash. Constr Build Mater 98:257–264

    Article  Google Scholar 

  36. Fam M (1995) Study of physico-chemical processes in geomaterials with mechanical and electromagnetic waves. Ph.D. Thesis. University of Waterloo. Waterloo, Canada

  37. Fragoulis D, Stamatakis MG, Papageorgiou D, Chaniotakis E (2005) The physical and mechanical properties of composite cements manufactured with calcareous and clayey Greek diatomite mixtures. Cement Concr Compos 27(2):205–209

    Article  Google Scholar 

  38. Fulton GP (2000) Diatomaceous earth filtration for safe drinking water. American Society of Civil Engineers, Reston

    Book  Google Scholar 

  39. Greenspan HP, Ungarish M (1982) On hindered settling of particles of different sizes. Int J Multiph Flow 8(6):587–604

    Article  Google Scholar 

  40. Guo P, Su X (2007) Shear strength, interparticle locking, and dilatancy of granular materials. Can Geotech J 44(5):579–591

    Article  Google Scholar 

  41. Haigh SK, Vardanega PJ, Bolton MD (2013) The plastic limit of clays. Geotechnique 63(6):435–440

    Article  Google Scholar 

  42. Hamm CE, Merkel R, Springer O, Jurkojc P, Maier C, Prechtel K, Smetacek V (2003) Architecture and material properties of diatom shells provide effective mechanical protection. Nature 421:841–843

    Article  Google Scholar 

  43. Hardin BO (1985) Crushing of soil particles. J Geotech Eng 111(10):1177–1192

    Article  Google Scholar 

  44. Hoang NQ, Kim SY, Lee JS (2022) Compressibility, stiffness and electrical resistivity characteristics of sand–diatom mixtures. Géotechnique 72(12):1068–1081

    Article  Google Scholar 

  45. Hong J, Tateishi Y, Han J (2006) Experimental study of macro- and micro behavior of natural diatomite. J Geotech Geoenviron Eng 132(5):603–610

    Article  Google Scholar 

  46. Israelachvili JN (2011) Intermolecular and surface forces. Academic Press

  47. Jeffryes C, Campbell J, Li H, Jiao J, Rorrer G (2011) The potential of diatom nanobiotechnology for applications in solar cells, batteries, and electroluminescent devices. Energy Environ Sci 4(10):3930–3941

    Article  Google Scholar 

  48. Jones SB, Wraith JM, Or D (2002) Time domain reflectometry measurement principles and applications. Hydrol Process 16:141–153

    Article  Google Scholar 

  49. Kastis D, Kakali G, Tsivilis S, Stamatakis MG (2006) Properties and hydration of blended cements with calcareous diatomite. Cem Concr Res 36(10):1821–1826

    Article  Google Scholar 

  50. Kietzman JH, Rodier CE (1984) Effect of diatomite filler on performance of asphalt pavements. Transp Res Rec 968:8–19

    Google Scholar 

  51. Klein KA, Santamarina JC (2003) Electrical conductivity in soils: underlying phenomena. J Environ Eng Geophys 8(4)

  52. Klein KA, Santamarina JC (2005) Soft sediments: wave-based characterization. J Geotech Geoenviron Eng 5(2):147–157

    Google Scholar 

  53. Klein SH (1972) US Patent No. 3,705,651. Washington, DC: US Patent and Trademark Office

  54. Krumbein WC (1941) The effects of abrasion on the size, shape, and roundness of rock fragments. J Geol 49(5):482–520

    Article  Google Scholar 

  55. Lade PV, Yamamuro JA, Bopp PA (1996) Significance of particle crushing in granular materials. J Geotech Eng 122(4):309–316

    Article  Google Scholar 

  56. Lee J (2014) Evaluation of diatomaceous earth content in natural soils for potential engineering applications. MS Thesis. University of Wisconsin-Madison. Madison, WI. USA

  57. Lee KL, Farhoomand I (1967) Compressibility and crushing of granular soil in anisotropic triaxial compression. Can Geotech J 4(1):68–86

    Article  Google Scholar 

  58. Leinen M (1976) A normative calculation technique for determining opal in deep-sea sediments. Geochim Cosmochim Acta 41(5):671–676

    Article  MathSciNet  Google Scholar 

  59. Leluk K, Orzechowski K, Jerie K, Baranowski A, Slonka T, Glowinski J (2010) Dielectric permittivity of kaolinite heated to high temperatures. J Phys Chem Solids 71(5):827–831

    Article  Google Scholar 

  60. Liu X, Chen J, Li H (2006) Phase morphology and rheological properties of metallocene-catalyzed linear low-density polyethylene with a small amount of diatomite/oligomer hybrids. J Polym Sci Part B: Polym Phys 44(9):1287–1295

    Article  Google Scholar 

  61. Losic D, Pillar RJ, Dilger T, Mitchell JG, Voelcker NH (2007) Atomic force microscopy (AFM) characterization of the porous silica nanostructure of two centric diatoms. J Porous Mater 14(1):61–69

    Article  Google Scholar 

  62. Lundkvist M, Gangelhof U, Lunding J, Flindt MR (2007) Production and fate of extracellular polymeric substances produced by benthic diatoms and bacteria: a laboratory study. Estuar Coast Shelf Sci 75(3):337–346

    Article  Google Scholar 

  63. Luo JJ, Daniel IM (2003) Characterization and modeling of mechanical behavior of polymer/clay nanocomposites. Compos Sci Technol 63(11):1607–1616

    Article  Google Scholar 

  64. MacKillop AK, Moran K, Jarrett K, Farrell J, Murray D (1995) 16. Consolidation properties of Equatorial Pacific Ocean sediments and their relationship to stress history and offset in the LEG 138 composition depth sections. Proc ODP Sci Results 138:357–369

    Google Scholar 

  65. Madsen KN, Nilsson P, Sundback K (1993) The influence of benthic microalgae on the stability of a subtidal sediment. J Exp Mar Biol Ecol 170(2):159–177

    Article  Google Scholar 

  66. Marković G, Marinović-Cincović M, Valentova H, Ilavsky M, Radovanović B, Budinski-Simendić J (2005) Curing characteristics and dynamic mechanical behavior of reinforced acrylonitrile-butadiene/chlorosulfonated polyethylene rubber blends. Mater Sci Forum 494:475–480

    Article  Google Scholar 

  67. McAllister SD, Ponraj R, Cheng F, Edwards DB (2007) Increase of positive active material utilization in lead-acid batteries using diatomaceous earth additives. J Power Sources 173(2):882–886

    Article  Google Scholar 

  68. McManis KL, Nataraj M (1997) Characterization of filter cake ash and applications for soil stabilization. In: Testing soil mixed with waste or recycled materials. ASTM International

  69. Miklasz KA, Denny MW (2010) Diatom sinking speeds: Improved predictions and insight from a modified Stokes’ law. Limnol Oceanogr 55(6):2513–2525

    Article  Google Scholar 

  70. Mortlock RA, Froelich PN (1989) A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Res Part A. Oceanogr Res Pap 36(9):1415–1426

  71. Muller PJ, Schneider R (1993) An automated leaching method for the determination of opal in sediments and particulate matter. Deep Sea Res Part I 40(3):425–444

    Article  Google Scholar 

  72. Odell RT, Thornburn TH, McKenzie LJ (1960) Relationships of Atterberg limits to some other properties of Illinois soils. Soil Sci Soc Am J 24(4):297–300

    Article  Google Scholar 

  73. Or D, Wraith JM (1999) Temperature effects on soil bulk dielectric permittivity measured by time domain reflectometry: a physical model. Water Resour Res 35(2):371–383

    Article  Google Scholar 

  74. Osmanlioglu AE (2007) Natural diatomite process for removal of radioactivity from liquid waste. Appl Radiat Isot 65(1):17–20

    Article  Google Scholar 

  75. Ovalle C, Arenaldi-Perisic G (2021) Mechanical behaviour of undisturbed diatomaceous soil. Mar Georesour Geotechnol 39(5):623–630

    Article  Google Scholar 

  76. Palomino AM, Burns SE, Santamarina JC (2008) Mixtures of fine-grained minerals—kaolinite and carbonate grains. Clays Clay Miner 56(6):599–611

    Article  Google Scholar 

  77. Palomino AM, Kim S, Summitt A, Fratta D (2011) Impact of diatoms on fabric and chemical stability of diatom–kaolin mixtures. Appl Clay Sci 51(3):287–294

    Article  Google Scholar 

  78. Palomino AM, Santamarina JC (2005) Fabric map for kaolinite: effects of pH and ionic concentration on behavior. Clays Clay Miner 53(3):209–222

    Article  Google Scholar 

  79. Perisic GA, Ovalle C, Barrios A (2019) Compressibility and creep of a diatomaceous soil. Eng Geol 258:105145

    Article  Google Scholar 

  80. Pokras EM (1986) Preservation of fossil diatoms in Atlantic sediment cores: control by supply rate. Deep Sea Res Part A. Oceanogr Res Pap 33(7):893–902

  81. Portier R, Fujisaki K, Reily L, Henry C (1987a) Detoxification of contaminated groundwaters using a marine polysaccharide/diatomaceous earth packed bed biological reactor. Oceans 1709–1712

  82. Portier R, Fujisaki K, Reily L, McMillin D (1987b) Detoxification of rinsates from aerial pesticide applications using a marine polysaccharide/diatomaceous earth packed bed biological reactor. Oceans 1713–1716

  83. Portier RJ, Miller GP (1991) Immobilized microbe bioreactors for wastewater treatment. Waste Manage Res 9(5):445–451

    Article  Google Scholar 

  84. Rao SM, Sridharan A, Chandrakaran S (1989) Influence of drying on the liquid limit behaviour of a marine clay. Geotechnique 39(4):715–719

    Article  Google Scholar 

  85. Revil A (2013) Effective conductivity and permittivity of unsaturated porous materials in the frequency range 1 MHz–1 GHz. Water Resour Res 49(1):306–327

    Article  Google Scholar 

  86. Rhoades JD, Manteghi NA, Shouse PJ, Alves WJ (1989) Estimating soil salinity from saturated soil-paste electrical conductivity. Soil Sci Soc Am J 53(2):428–433

    Article  Google Scholar 

  87. Roth K, Schulin R, Flühler H, Attinger W (1990) Calibration of time domain reflectometry for water content measurement using a composite dielectric approach. Water Resour Res 26(10):2267–2273

    Google Scholar 

  88. Santamarina JC, Fratta D (2003) Dynamic electrical-mechanical energy coupling in electrolyte-mineral systems. Transp Porous Media 50(1–2):153–178

    Article  Google Scholar 

  89. Santamarina JC, Klein KA, Fam MA (2001) Soils and waves. Wiley, Chichester

    Google Scholar 

  90. Sen PN, Scala C, Cohen MH (1981) A self-similar model for sedimentary rocks with application to the dielectric constant of fused glass beads. Geophysics 46(5):781–795

    Article  Google Scholar 

  91. Shalkevich A, Stradner A, Bhat SK, Muller F, Schurtenberger P (2007) Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions. Langmuir 23(7):3570–3580

    Article  Google Scholar 

  92. Shiwakoti DR, Tanaka H, Tanaka M, Locat J (2002) Influences of diatom microfossils on engineering properties of soils. Soils Found 42(3):1–17

    Article  Google Scholar 

  93. Stachowiak GW (2000) Particle angularity and its relationship to abrasive and erosive wear. Wear 241(2):214–219

    Article  Google Scholar 

  94. Stepkowska ET, Perez-Rodriguez JL, Justo A, Soto PS, Jefferis SA (1988) Possibility of feldspar formation in bentonite suspensions during storage, drying and/or heating. Thermochim Acta 135:319–334

    Article  Google Scholar 

  95. Stewart DI, Studds PG, Cousens TW (2003) The factors controlling the engineering properties of bentonite-enhanced sand. Appl Clay Sci 23(1–4):97–110

    Article  Google Scholar 

  96. Tanaka M, Tanaka H (2003) Effects of diatom microfossil contents on engineering properties of soils. International Society of Offshore and Polar Engineers 372–377

  97. Topp GC, Davis JL, Annan AP (1980) Electromagnetic determination of soil water content: measurements in coaxial transmission lines. Water Resour Res 16(3):574–582

    Article  Google Scholar 

  98. Tsai WT, Hsien KJ, Yang JM (2004) Silica adsorbent prepared from spent diatomaceous earth and its application to removal of dye from aqueous solution. J Colloid Interface Sci 275(2):428–433

    Article  Google Scholar 

  99. Tsomokos A, Georgiannou VN (2010) Effect of grain shape and angularity on the undrained response of fine sands. Can Geotech J 47(5):539–551

    Article  Google Scholar 

  100. Underwood GJ, Paterson DM (1993) Seasonal changes in diatom biomass, sediment stability and biogenic stabilization in the Severn Estuary. J Mar Biol Assoc UK 73(4):871–887

    Article  Google Scholar 

  101. Vaneesorn N, Khammanee S, Kahawong P, Danwittayakul S, Thanaboonsombut A (2009) Utilization of diatomite as a desiccant aid. In: 27th Annual Cocoa Beach conference on advanced ceramics and composites-A 268:159

  102. Wagner N, Emmerich K, Bonitz F, Kupfer K (2011) Experimental investigations on the frequency-and temperature-dependent dielectric material properties of soil. IEEE Trans Geosci Remote Sens 49(7):2518–2530

    Article  Google Scholar 

  103. Wasti Y (1987) Liquid and plastic limits as determined from the fall cone and the Casagrande methods. Geotech Test J 10(1):26–30

    Article  Google Scholar 

  104. Wei J, Gencturk B (2018) Degradation of natural fiber in cement composites containing diatomaceous earth. J Mater Civ Eng 30(11):04018282

    Article  Google Scholar 

  105. White WA (1949) Atterberg plastic limits of clay minerals. Am Mineral: J Earth Planet Mater 34(7–8):508–512

    Google Scholar 

  106. Wiemer G, Kopf A (2017) Influence of diatom microfossils on sediment shear strength and slope stability. Geochem Geophys Geosyst 18(1):333–345

    Article  Google Scholar 

  107. Wroth CP, Wood DM (1978) The correlation of index properties with some basic engineering properties of soils. Can Geotech J 15(2):137–145

    Article  Google Scholar 

  108. Xu Y, Zhang X, Liu X, Wang G (2022) Alterations of physical properties and microstructure of marine diatomite owing to variation of diatom content. Mar Georesour Geotechnol 41(4):376–387

    Article  Google Scholar 

  109. Yilmaz B (2008) A study on the effects of diatomite blend in natural pozzolan-blended cements. Adv Cem Res 20(1):13–21

    Article  Google Scholar 

  110. Zuluaga-Astudillo D, Ruge JC, Camacho-Tauta J, Reyes-Ortiz O, Caicedo-Hormaza B (2023) Diatomaceous soils and advances in geotechnical engineering—Part I. Appl Sci 13(1):549

    Article  Google Scholar 

Download references

Acknowledgements

The Wisconsin Highway Research Program partially supported Dr. Jeongki Lee’s studies. The authors also acknowledge the support provided by the Civil and Environmental Engineering departments at the University of Wisconsin-Madison and the University of Tennessee-Knoxville.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dante Fratta.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Fratta, D. & Palomino, A.M. The effect of diatom content on the physical, electrical, and mechanical properties of soils. Acta Geotech. 19, 2251–2271 (2024). https://doi.org/10.1007/s11440-023-02036-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-02036-7

Keywords

Navigation