Skip to main content
Log in

On the technique for estimating the maximum horizontal principal stress based on the borehole failure observations

  • Short Communication
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Good understanding of the in-situ stress and rock mass strength or their relative magnitudes is essential to underground geomechanical practices. A prevailing technique for estimating the maximum horizontal stress is the integrated method combining stress polygon, borehole breakout, and drilling-induced tensile fracture. This research embraced all these elements into a nondimensionalized chart to interpret the triangle relation among the in-situ stress, rock mass strength, and failure observation for an underground cylindrical opening at any depth. One of the potential applications of the nondimensionalized chart was shown via the filed observations from a testing tunnel in the Canadian underground research laboratory. An approaching method of untangling two correlated stress components was also proposed to constrain the in-situ stress ratio under the framework of Coulomb frictional failure theory. It is proved to be highly efficient and considerably accurate by implementing the approaching method using the failure observations from the KTB borehole in German.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Barton CA, Zoback MD, Burns KL (1988) In-situ stress orientation and magnitude at the Fenton Geothermal Site, New Mexico, determined from wellbore breakouts. Geophys Res Lett 15(5):467–470. https://doi.org/10.1029/GL015i005p00467

    Article  Google Scholar 

  2. Brodsky EE, Saffer D, Fulton P, Chester F, Conin M, Huffman K, Moore JC, Wu HY (2017) The postearthquake stress state on the Tohoku megathrust as constrained by reanalysis of the JFAST breakout data. Geophys Res Lett 44:8294–8302. https://doi.org/10.1002/2017GL074027

    Article  Google Scholar 

  3. Brudy M, Zoback MD, Fuchs K, Rummel F, Baumgärtner J (1997) Estimation of the complete stress tensor to 8 km depth in the KTB scientific drill holes: implications for crustal strength. J Geophys Res 102(B8):18453–18475. https://doi.org/10.1029/96JB02942

    Article  Google Scholar 

  4. Byerlee JD (1978) Friction of rocks. Pure Appl Geophys 116:615–626. https://doi.org/10.1007/BF00876528

    Article  Google Scholar 

  5. Cai M (2010) Practical estimates of tensile strength and Hoek–Brown strength parameter mi of brittle rocks. Rock Mech Rock Eng 43:167–184. https://doi.org/10.1007/s00603-009-0053-1

    Article  Google Scholar 

  6. Chang CD, Haimson BC (2007) Effect of fluid pressure on rock compressive failure in a nearly impermeable crystalline rock: implication on mechanism of borehole breakouts. Eng Geol 89(3–4):230–242. https://doi.org/10.1016/j.enggeo.2006.10.006

    Article  Google Scholar 

  7. Colmenares LB, Zoback MD (2002) A statistical evaluation of intact rock failure criteria constrained by polyaxial test data for five different rocks. Int J Rock Mech Min Sci 39(6):695–729. https://doi.org/10.1016/S1365-1609(02)00048-5

    Article  Google Scholar 

  8. Dahrabou A, Valley B, Meier P, Brunner P, Alcolea A (2022) A systematic methodology to calibrate wellbore failure models, estimate the in-situ stress tensor and evaluate wellbore cross-sectional geometry. Int J Rock Mech Min Sci 149:104935. https://doi.org/10.1016/j.ijrmms.2021.104935

    Article  Google Scholar 

  9. Duan K, Kwok CY, Wu W, Jing L (2018) DEM modeling of hydraulic fracturing in permeable rock: influence of viscosity, injection rate and in situ states. Acta Geotech 13:1187–1202. https://doi.org/10.1007/s11440-018-0627-8

    Article  Google Scholar 

  10. Haimson BC, Chang C (2002) True triaxial strength of the KTB amphibolite under borehole wall conditions and its use to estimate the maximum horizontal in situ stress. J Geophys Res 107(B10):2257. https://doi.org/10.1029/2001JB000647

    Article  Google Scholar 

  11. Hickman S, Zoback M (2004) Stress orientations and magnitudes in the SAFOD pilot hole. Geophys Res Lett 31:L15S12. https://doi.org/10.1029/2004GL020043

    Article  Google Scholar 

  12. Jo YG, Chang CD, Ji SH, Park KW (2019) In situ stress states at KURT, an underground research laboratory in South Korea for the study of high-level radioactive waste disposal. Eng Geol 259:105198. https://doi.org/10.1016/j.enggeo.2019.105198

    Article  Google Scholar 

  13. Lin H, Kang WH, Oh J, Canbulat I (2020) Estimation of in-situ maximum horizontal principal stress magnitudes from borehole breakout data using machine learning. Int J Rock Mech Min Sci 126:104199. https://doi.org/10.1016/j.ijrmms.2019.104199

    Article  Google Scholar 

  14. Lin H, Singh S, Oh J, Canbulat I, Kang WH, Hebblewhite B, Stacey TR (2020) A combined approach for estimating horizontal principal stress magnitudes from borehole breakout data via artificial neural network and rock failure criterion. Int J Rock Mech Min Sci 136:104539. https://doi.org/10.1016/j.ijrmms.2020.104539

    Article  Google Scholar 

  15. Martin CD (1993) Strength of massive Lac du Bonnet granite around underground openings. Dissertation, University of Manitoba

  16. Moos D, Morin RH (1991) Observations of wellbore failure in the Toa Baja Well—implications for the state of stress in the North Coast Tertiary Basin, Puerto Rico. Geophys Res Lett 18(3):505–508. https://doi.org/10.1029/91GL00408

    Article  Google Scholar 

  17. Moos DB, Zoback MD (1990) Utilization of observations of well bore failure to constrain the orientation and magnitude of crustal stresses: application to continental, Deep Sea Drilling Project, and Ocean Drilling Program boreholes. J Geophys Res 95(B6):9305–9325. https://doi.org/10.1029/JB095iB06p09305

    Article  Google Scholar 

  18. Pierdominici S, Millett JM, Kück JKM, Thomas D, Jerram DA, Planke S, Haskins E, Lautze N, Galland O (2020) Stress field interactions between overlapping shield volcanoes: borehole breakout evidence from the island of Hawai’i, USA. J Geophys Res Solid Earth 125:e2020JB019768. https://doi.org/10.1029/2020JB019768

    Article  Google Scholar 

  19. Reis ÁFC, Bezerra FHR, Ferreira JM, do Nascimento AF, Lima CC (2013) Stress magnitude and orientation in the Potiguar Basin, Brazil: implications on faulting style and reactivation. J Geophys Res Solid Earth 118:5550–5563. https://doi.org/10.1002/2012JB009953

    Article  Google Scholar 

  20. Shi C, Lin BT, Yu HY, Shi SZ, Zhang JH (2022) Characterization of hydraulic fracture configuration based on complex in situ stress field of a tight oil reservoir in Junggar Basin, Northwest China. Acta Geotech. https://doi.org/10.1007/s11440-022-01607-4

    Article  Google Scholar 

  21. Song I, Chang C (2018) Stochastic optimization of in situ horizontal stress magnitudes using probabilistic model of rock failure at wellbore breakout margin. Rock Mech Rock Eng 51:2761–2776. https://doi.org/10.1007/s00603-018-1485-2

    Article  Google Scholar 

  22. Talukdar M, Sone H, Kuo LW (2022) Lithology and fault-related stress variations along the TCDP boreholes: the stress state before and after the 1999 Chi-Chi earthquake. J Geophys Res Solid Earth 127:e2021JB023290. https://doi.org/10.1029/2021JB023290

    Article  Google Scholar 

  23. Vecchia GD, Pandolfi A, Musso G, Capasso G (2014) An analytical expression for the determination of in situ stress state from borehole data accounting for breakout size. Int J Rock Mech Min Sci 66:64–68. https://doi.org/10.1016/j.ijrmms.2013.12.012

    Article  Google Scholar 

  24. Vernik L, Zoback MD (1992) Estimation of maximum horizontal principal stress magnitude from stress-induced well bore breakouts in the Cajon Pass Scientific Research borehole. J Geophys Res 97(B4):5109–5119. https://doi.org/10.1029/91JB01673

    Article  Google Scholar 

  25. Wang HW (2021) An analytical solution for the stress distribution around the cased borehole in the orthotropic formation. Int J Rock Mech Min Sci 142:104770. https://doi.org/10.1016/j.ijrmms.2021.104770

    Article  Google Scholar 

  26. Wiprut D, Zoback MD (2000) Constraining the stress tensor in the Visund field, Norwegian North Sea: application to wellbore stability and sand production. Int J Rock Mech Min Sci 37(1–2):317–336. https://doi.org/10.1016/S1365-1609(99)00109-4

    Article  Google Scholar 

  27. Yang JP, Chen WZ, Zhao WS, Tan XJ, Tian HM, Yang DS, Ma CS (2017) Geohazards of tunnel excavation in interbedded layers under high in situ stress. Eng Geol 230:11–22. https://doi.org/10.1016/j.enggeo.2017.09.007

    Article  Google Scholar 

  28. Zoback MD (2007) Reservoir geomechanics. Cambridge University Press, New York

    Book  Google Scholar 

  29. Zoback M, Apel R, Baumgärtner J, Brudy M, Emmermann R, Engeser B, Fuchs F, Kessels W, Rischmüller H, Rummel F, Vernik L (1993) Upper-crustal strength inferred from stress measurements to 6 km depth in the KTB borehole. Nature 365:633–635. https://doi.org/10.1038/365633a0

    Article  Google Scholar 

  30. Zoback MD, Barton CA, Brudy M, Castillo DA, Finkbeiner T, Grollimund BR, Moos DB, Peska P, Ward CD, Wiprut DJ (2003) Determination of stress orientation and magnitude in deep wells. Int J Rock Mech Min Sci 40(7–8):1049–1076. https://doi.org/10.1016/j.ijrmms.2003.07.001

    Article  Google Scholar 

  31. Zoback MD, Healy JH (1992) In situ stress measurements to 3.5 km depth in the Cajon Pass scientific research borehole: implications for the mechanics of crustal faulting. J Geophys Res 97(B4):5039–5057. https://doi.org/10.1029/91JB02175

    Article  Google Scholar 

  32. Zoback MD, Townend J (2001) Implications of hydrostatic pore pressures and high crustal strength for the deformation of intraplate lithosphere. Tectonophysics 336(1–4):19–30. https://doi.org/10.1016/S0040-1951(01)00091-9

    Article  Google Scholar 

Download references

Acknowledgements

The research was supported by the National Natural Science Foundation of China (NSFC) (Contract Nos. 42002278 and 41941018), the Innovation Fund Research Project of State Key Laboratory for Geomechanics and Deep Underground Engineering, Beijing (Contract No. SKLGDUEK202207), and the Special Fund of Basic Research and Operating of China University of Mining and Technology, Beijing (Contract No. 2021JCCXSB03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Peng-fei He or Zhi-gang Tao.

Ethics declarations

Conflict of interest

The authors have no conflict of interest to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Pf., He, Mc., Li, X. et al. On the technique for estimating the maximum horizontal principal stress based on the borehole failure observations. Acta Geotech. 19, 2337–2348 (2024). https://doi.org/10.1007/s11440-023-02020-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-02020-1

Keywords

Navigation