Skip to main content
Log in

Investigation of the soil deformation around laterally loaded deep foundations with large diameters

  • Review Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

In projects such as highway bridges and offshore wind farms, understanding the kinematics of soil layers and their displacement is important for accurately predicting the behavior of caissons and monopiles under lateral loads. To better predict the distribution of soil deformation around the foundations, this paper presents an extensive usage of the energy-based variational method in laterally loaded deep foundations (caissons or monopiles) with very large diameters. By adding an assumption of soil deformation in multilayered soils, the displacement distribution around the foundations can be better described. The responses of deep foundations were obtained by minimizing the potential energy and virtual work of the foundation-soil system. After that, static lateral loading tests on two caissons with the same embedment depth of 36 m and the same diameter of 6 m were performed, and the displacement field in soils and the deflection profiles of the caissons were measured. Results show that the lateral displacement and the decay distribution fields calculated from the theory in this paper agree with the measured data from the static loading tests and the corresponding finite differential method (FDM) results. At last, a series of case studies performed by MATLAB and FDM analyses were also conducted to study the influence of uz on the response of foundations, as well as the influence of foundation parameters and soil modulus on the value of ϕz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

Data availability

Some or all data, models, or codes that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Assimaki VD, Gazetas G (2009) A simplified model for the lateral response of large diameter caisson foundations-linear elastic formulation. Soil Dyn Earthq Eng 29(2):268–291

    Article  Google Scholar 

  2. Basu D, Salgado R (2007) Elastic analysis of laterally loaded pile in multilayered soil. Geomech Geoeng 2(3):183–196

    Article  Google Scholar 

  3. Basu D, Salgado R (2008) Analysis of laterally loaded piles with rectangular cross sections embedded in layered soil. Int J Numer Anal Methods Geomech 32(7):721–744

    Article  Google Scholar 

  4. Basu D, Salgado R, Prezzi M (2013) A new framework for analysis of laterally loaded piles. J. Geo Eng Sci 1(1):53–67

    Google Scholar 

  5. Broms BB (1964) Lateral resistance of piles in cohesive soils”. J Soil Mech Found Div 90(2):27–63

    Article  Google Scholar 

  6. Byrne BW, McAdam RA, Burd H et al (2017) PISA: new design methods for offshore wind turbine monopiles. In: Conference: 8th international conference for offshore site investigation and geotechnics, London, pp 11–17

  7. Byron WB, Houlsby GT (2017) Application of the PISA design model to monopiles embedded in layered soils. Géotechnique 70(11):1–55

    Google Scholar 

  8. Cao G, Chian S, Ding X et al (2023) Horizontal impedances for OWT monopiles based on Timoshenko beam theory. Int J Geomech. https://doi.org/10.1061/IJGNAI/GMENG-8449

    Article  Google Scholar 

  9. Cao G, Ding X, Yin Z et al (2021) A new soil reaction model for large diameter monopile in clay. Comput Geotech 137(3):104311

    Article  Google Scholar 

  10. Chiou JS, Ko YY, Hsu SY, Tsai Y-C (2012) Testing and analysis of a laterally loaded bridge caisson foundation in gravel. Soils Found 52(3):562–573

    Article  Google Scholar 

  11. Fu D, Zhang Y, Aamodt KK et al (2020) A multi-spring model for monopile analysis in soft clays. Mar Struct 72:102768

    Article  Google Scholar 

  12. Gupta BK, Basu D (2017) Analysis of laterally loaded short and long piles in multilayered heterogeneous elastic soil. Soils Found 57(1):92–110

    Article  Google Scholar 

  13. Gupta BK, Basu D (2018) Applicability of Timoshenko, Euler–Bernoulli and rigid beam theories in the analysis of laterally loaded monopiles and piles. Géotechnique 68(9):772–785

    Article  Google Scholar 

  14. Han F, Prezzi M, Salgado R (2017) Energy-based solutions for nondisplacement piles subjected to lateral loads. Int J Geomech 17(11):04017104

    Article  Google Scholar 

  15. Han F, Salgado R, Prezzi M (2015) Nonlinear analyses of laterally loaded piles—a semi-analytical approach. Comput Geotech 70:116–129

    Article  Google Scholar 

  16. Han F (2017) Axial and lateral resistance of non-displacement piles. Ph.D Dissertation, Purdue University: West Lafayette

  17. Harvey B, Chreistelle NA, Byron WB, Houlsby GT (2017) Application of the PISA design model to monopiles embedded in layered soils. Géotechnique 70(11):1–55

    Google Scholar 

  18. Huang M, Zhang C, Mu L, Gong W (2011) Analysis of anchor foundation with root caissons loaded in nonhomogeneous soils. Can Geotech J 48(2):234–246

    Article  Google Scholar 

  19. Itasca (2012) FLAC3D v5.0 (demonstration version), fast Lagrangian analysis of continua in 3 dimensions, user’s guide. Itasca Consulting Group, Minneapolis

    Google Scholar 

  20. Li X, Dai G, Zhang F, Gong W (2022) Energy-based analysis of laterally loaded caissons with large diameters under small-strain conditions. Int J Geomech 22(8):05022005

    Article  Google Scholar 

  21. Li X, Dai G, Zhu M, Wang L, Liu H (2023) A simplified method for estimating the initial stiffness of monopile-soil interaction under lateral loads in offshore wind turbine systems. China Ocean Eng 37(1):165–174

    Article  Google Scholar 

  22. Li X, Zhou H, Liu H, Chen Z (2021) Three-dimensional analytical continuum model for axially loaded noncircular piles in multilayered elastic soil. Int J Numer Anal Methods Geomech 2021:1–28

    Google Scholar 

  23. Masound HB, Sojoudi Y, Puppala A (2013) Study of strain wedge parameters for laterally loaded piles. Int J Geomech 13(2):143–152

    Article  Google Scholar 

  24. Qu L, Yang C, Ding X et al (2021) Vertical vibration of piles with square cross-section. Int J Numer Anal Methods Geomech 45:2629–2653

    Article  Google Scholar 

  25. Rao NSVK, Das YC, Anandakrishnan M (1971) Variational approach to beams on elastic foundations. J Eng Mech Div 97(2):271–294

    Article  Google Scholar 

  26. Salgado R, Tehrani FS, Prezzi M (2014) Analysis of laterally loaded pile groups in multilayered elastic soil. Comput Geotech 62:136–153

    Article  Google Scholar 

  27. Sun K (1994) A numerical method for laterally loaded pile. Comput Geotech 16(4):263–289

    Article  Google Scholar 

  28. Sun K (1994) Laterally loaded piles in elastic media. J Geotech Eng 120(8):1324–1344

    Article  Google Scholar 

  29. Tehrani FS, Prezzi M, Salgado R (2016) A multidirectional semi-analytical method for analysis of laterally loaded pile groups in multi-layered elastic strata. Int J Numer Anal Methods Geomech 40(12):1730–1757

    Article  Google Scholar 

  30. Tehrani FS, Salgado R, Prezzi M (2016) Analysis of axial loading of pile groups in multilayered elastic soil. Int J Geomech 16(2):04015063

    Article  Google Scholar 

  31. The MathWorks Inc (2018) Optimization toolbox version: (R2018b), Natick, Massachusetts: The MathWorks Inc. https://www.mathworks.com

  32. Vallabhan CVG, Das YC (1988) Parametric study of beams on elastic foundations. J Eng Mech 114(12):2072–2082

    Article  Google Scholar 

  33. Vallabhan CV, Das YC (1991) Modified Vlasov model for beams on elastic foundations. J Geotech Eng 117(6):956–966

    Article  Google Scholar 

  34. Vlasov VZ, Leontiev NN (1966) Beams, plates and shells on elastic foundation. Washington DC: NTIS Accession No. N67-14238, Israel Program for Scientific Translations

  35. Wang H, Lehance BM, Bransby MF et al (2022) A simple rotational spring model for laterally loaded rigid piles in sand. Mar Struct 84:103225

    Article  Google Scholar 

  36. Yuan B, Chen W, Jiang T, Wang Y et al (2013) Stereo particle image velocimetry measurement of 3D soil deflection around laterally loaded pile in sand. J Cent South Univ 20:791–798

    Article  Google Scholar 

  37. Yuan B, Sun M, Wang Y et al (2019) Full 3D displacement measuring system for 3D displacement field of soil around a laterally loaded pile in transparent soil. Int J Geomech 19(5):04019028

    Article  Google Scholar 

  38. Yuan B, Xu K, Wang X et al (2017) Investigation of deflection of a laterally loaded pile and soil deformation using the PIV technique. Int J Geomech 17(6):04016138

    Article  Google Scholar 

  39. Zha X, Guo Z, Wang L, Rui S (2022) A simplified model for predicting the accumulated displacement of monopile under horizontal cyclic loadings. Appl Ocean Res 129:103389

    Article  Google Scholar 

Download references

Acknowledgements

The study presented herein is supported by the National Natural Science Foundation of China (NO.52201324, 52078128), and the Natural Science Foundation of the Jiangsu Higher Education Institution of China (22KJB560015). The authors are grateful for their support.

Author information

Authors and Affiliations

Authors

Contributions

XL: Conceptualization, Methodology, Software, Results analysis, Writing original draft. GD: Software, Validation, Funding acquisition, Project administration. MZ: Conceptualization, Writing review and editing, Resources, Formal analysis. WZ: Software, Results analysis, Making scientific figures. FZ: Investigation, Making scientific figures, Validation.

Corresponding author

Correspondence to Xiaojuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 59 KB)

Appendix

Appendix

The matrixes of Kϕr, Kϕθ, Kϕz, Am, Bm, Cm, P, E, Q, G, M and N are given below:

$$\begin{aligned} {\mathbf{K}}_{{\phi _{{\mathbf{r}}} }} & = \left[ {\begin{array}{*{20}l} 1 \hfill & 0 \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ 0 \hfill & 1 \hfill & 0 \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ 0 \hfill & . \hfill & . \hfill & 1 \hfill & 0 \hfill & . \hfill \\ 0 \hfill & . \hfill & . \hfill & {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & { - \left( {\frac{2}{{\Delta r^{2} }} + \left( {\frac{{\gamma _{1} }}{r}} \right)^{2} + \left( {\frac{{\gamma _{2} }}{{rp}}} \right)^{2} } \right)} \hfill & {\frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & { - \left( {\frac{2}{{\Delta r^{2} }} + \left( {\frac{{\gamma _{1} }}{r}} \right)^{2} + \left( {\frac{{\gamma _{2} }}{{rp}}} \right)^{2} } \right)} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ \end{array} } \right. \\ & \quad \left. {\begin{array}{*{20}l} . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {\frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & { - \left( {\frac{2}{{\Delta r^{2} }} + \left( {\frac{{\gamma _{1} }}{r}} \right)^{2} + \left( {\frac{{\gamma _{2} }}{{rp}}} \right)^{2} } \right)} \hfill \\ {} \hfill & . \hfill & . \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right]_{{4n \times 4n}} \\ \end{aligned}$$
(22)
$${\mathbf{A}}_{{\mathbf{m}}} = \left[ {\begin{array}{*{20}c} 1 \\ 1 \\ . \\ 1 \\ 0 \\ 0 \\ . \\ . \\ . \\ . \\ 0 \\ \end{array} } \right]_{1 \times 4n}$$
(23)
$${\mathbf{B}}_{{\text{m}}} = \left[ {\begin{array}{*{20}c} 0 & 0 & . & . & . & . & . & . & . & . & 0 \\ 0 & 0 & 0 & . & . & . & . & . & . & . & 0 \\ . & . & . & . & . & . & . & . & . & . & . \\ 0 & . & . & 0 & 0 & . & . & . & . & . & . \\ 0 & . & . & { - \frac{{\gamma_{3}^{2} }}{r}\frac{1}{2\Delta r}} & { - \left( {\frac{{\gamma_{1} }}{r}} \right)^{2} } & {\frac{{\gamma_{3}^{2} }}{r}\frac{1}{2\Delta r}} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & { - \frac{{\gamma_{3}^{2} }}{r}\frac{1}{2\Delta r}} & { - \left( {\frac{{\gamma_{1} }}{r}} \right)^{2} } & {\frac{{\gamma_{3}^{2} }}{r}\frac{1}{2\Delta r}} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & { - \frac{{\gamma_{3}^{2} }}{r}\frac{1}{2\Delta r}} & { - \left( {\frac{{\gamma_{1} }}{r}} \right)^{2} } & {\frac{{\gamma_{3}^{2} }}{r}\frac{1}{2\Delta r}} \\ {} & {} & {} & {} & {} & {} & . & . & 0 & 0 & 0 \\ \end{array} } \right]_{4n \times 4n}$$
(24)
$${\mathbf{C}}_{{\text{m}}} = \left[ {\begin{array}{*{20}c} 0 & 0 & . & . & . & . & . & . & . & . & 0 \\ 0 & 0 & 0 & . & . & . & . & . & . & . & 0 \\ . & . & . & . & . & . & . & . & . & . & . \\ 0 & . & . & 0 & 0 & . & . & . & . & . & . \\ 0 & . & . & {\frac{{\gamma_{0}^{2} }}{2\Delta r}} & 0 & { - \frac{{\gamma_{0}^{2} }}{2\Delta r}} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {\frac{{\gamma_{0}^{2} }}{2\Delta r}} & 0 & { - \frac{{\gamma_{0}^{2} }}{2\Delta r}} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {\frac{{\gamma_{0}^{2} }}{2\Delta r}} & 0 & { - \frac{{\gamma_{0}^{2} }}{2\Delta r}} \\ {} & {} & {} & {} & {} & {} & . & . & 0 & 0 & 0 \\ \end{array} } \right]_{4n \times 4n}$$
(25)
$$\begin{aligned} {\mathbf{K}}_{{\phi _{\theta } }} & = \left[ {\begin{array}{*{20}l} 1 \hfill & 0 \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ 0 \hfill & 1 \hfill & 0 \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ 0 \hfill & . \hfill & . \hfill & 1 \hfill & 0 \hfill & . \hfill \\ 0 \hfill & . \hfill & . \hfill & {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & { - \left( {\frac{2}{{\Delta r^{2} }} + \left( {\frac{{\gamma _{4} }}{r}} \right)^{2} + \left( {\frac{{\gamma _{5} }}{{r_{p} }}} \right)^{2} } \right)} \hfill & {\frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & { - \left( {\frac{2}{{\Delta r^{2} }} + \left( {\frac{{\gamma _{4} }}{r}} \right)^{2} + \left( {\frac{{\gamma _{5} }}{{r_{p} }}} \right)^{2} } \right)} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill & . \hfill \\ \end{array} } \right. \\ & \quad \left. {\begin{array}{*{20}l} . \hfill & . \hfill & . \hfill & . \hfill & 0 \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {\frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {} \hfill & {} \hfill & {} \hfill \\ {} \hfill & {} \hfill & {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & { - \left( {\frac{2}{{\Delta r^{2} }} + \left( {\frac{{\gamma _{4} }}{r}} \right)^{2} + \left( {\frac{{\gamma _{5} }}{{r_{p} }}} \right)^{2} } \right)} \hfill & {\frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill \\ . \hfill & . \hfill & 0 \hfill & 0 \hfill & 1 \hfill \\ \end{array} } \right] \\ \end{aligned}$$
(26)
$${\mathbf{P}} = \left[ {\begin{array}{*{20}c} 1 \\ 1 \\ . \\ 1 \\ 0 \\ 0 \\ . \\ . \\ . \\ . \\ 0 \\ \end{array} } \right]_{1 \times 4n}$$
(27)
$${\mathbf{E}} = \left[ {\begin{array}{*{20}c} 0 & 0 & . & . & . & . & . & . & . & . & 0 \\ 0 & 0 & 0 & . & . & . & . & . & . & . & 0 \\ . & . & . & . & . & . & . & . & . & . & . \\ 0 & . & . & 0 & 0 & . & . & . & . & . & . \\ 0 & . & . & {\frac{{\gamma_{6}^{2} }}{r}\frac{1}{2\Delta r}} & { - \left( {\frac{{\gamma_{4} }}{r}} \right)^{2} } & { - \frac{{\gamma_{6}^{2} }}{r}\frac{1}{2\Delta r}} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {\frac{{\gamma_{6}^{2} }}{r}\frac{1}{2\Delta r}} & { - \left( {\frac{{\gamma_{4} }}{r}} \right)^{2} } & { - \frac{{\gamma_{6}^{2} }}{r}\frac{1}{2\Delta r}} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {\frac{{\gamma_{6}^{2} }}{r}\frac{1}{2\Delta r}} & { - \left( {\frac{{\gamma_{4} }}{r}} \right)^{2} } & { - \frac{{\gamma_{6}^{2} }}{r}\frac{1}{2\Delta r}} \\ {} & {} & {} & {} & {} & {} & . & . & 0 & 0 & 0 \\ \end{array} } \right]_{4n \times 4n}$$
(28)
$${\mathbf{Q}} = \left[ {\begin{array}{*{20}c} 0 & 0 & . & . & . & . & . & . & . & . & 0 \\ 0 & 0 & 0 & . & . & . & . & . & . & . & 0 \\ . & . & . & . & . & . & . & . & . & . & . \\ 0 & . & . & 0 & 0 & . & . & . & . & . & . \\ 0 & . & . & 0 & { - \frac{{\gamma_{7}^{2} }}{r}} & 0 & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & 0 & { - \frac{{\gamma_{7}^{2} }}{r}} & 0 & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & {} & {} & {} \\ {} & {} & {} & {} & {} & {} & {} & {} & 0 & { - \frac{{\gamma_{7}^{2} }}{r}} & 0 \\ {} & {} & {} & {} & {} & {} & . & . & 0 & 0 & 0 \\ \end{array} } \right]_{4n \times 4n}$$
(29)
$$\begin{aligned} {\mathbf{K}}_{{\phi _{z} }} & = \left[ {\begin{array}{*{20}l} 1 \hfill & 0 \hfill & 0 \hfill & {} \hfill & . \hfill \\ {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & { - \left( {\frac{1}{{\Delta r^{2} }} + \gamma _{8}^{2} + \frac{1}{{r^{2} }}} \right)} \hfill & {\frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & 0 \hfill & . \hfill \\ 0 \hfill & {} \hfill & 0 \hfill & { - \frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{\Delta r}}} \hfill & {\frac{1}{{\Delta r^{2} }}} \hfill \\ 0 \hfill & . \hfill & . \hfill & {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{\Delta r}} - (\gamma _{8} ^{2} + \frac{1}{{r^{2} }})} \hfill & { - \frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{\Delta r}}} \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & 0 \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill & . \hfill \\ 0 \hfill & . \hfill & . \hfill & 0 \hfill & 0 \hfill \\ \end{array} } \right. \\ & \quad \left. {\begin{array}{*{20}l} . \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill \\ {\frac{1}{{\Delta r^{2} }}} \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill \\ . \hfill & . \hfill & . \hfill & . \hfill \\ {\frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & { - \left( {\frac{1}{{\Delta r^{2} }} + \gamma _{8} ^{2} + \frac{1}{{r^{2} }}} \right)} \hfill & {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & 0 \hfill \\ 0 \hfill & {\frac{1}{{\Delta r^{2} }} + \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill & { - \left( {\frac{1}{{\Delta r^{2} }} + \gamma _{8} ^{2} + \frac{1}{{r^{2} }}} \right)} \hfill & {\frac{1}{{\Delta r^{2} }} - \frac{1}{r}\frac{1}{{2\Delta r}}} \hfill \\ 0 \hfill & 0 \hfill & 0 \hfill & 1 \hfill \\ \end{array} } \right]_{{4n \times 4n}} \\ \end{aligned}$$
(30)
$${\mathbf{G}} = \left[ {\begin{array}{*{20}c} 0 \\ 0 \\ . \\ 0 \\ 0 \\ 0 \\ . \\ . \\ . \\ . \\ 0 \\ \end{array} } \right]_{1 \times 4n}$$
(31)
$${\mathbf{M}} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & . & . & . & . & . & . \\ { - \frac{{\gamma_{7}^{2} }}{2\Delta r}} & {\frac{{\gamma_{7}^{2} }}{r}} & {\frac{{\gamma_{7}^{2} }}{2\Delta r}} & 0 & . & . & . & . & . \\ 0 & { - \frac{{\gamma_{7}^{2} }}{2\Delta r}} & {\frac{{\gamma_{7}^{2} }}{r}} & {\frac{{\gamma_{7}^{2} }}{2\Delta r}} & 0 & . & . & . & . \\ 0 & 0 & 0 & { - \gamma_{7}^{2} \frac{1}{\Delta r} + \frac{1}{r}\gamma_{7}^{2} } & {\gamma_{7}^{2} \frac{1}{\Delta r}} & . & . & . & . \\ {} & . & . & . & {} & . & . & . & . \\ . & . & . & . & . & . & . & . & . \\ . & . & . & . & {} & { - \frac{{\gamma_{7}^{2} }}{2\Delta r}} & {\frac{{\gamma_{7}^{2} }}{r}} & {\frac{{\gamma_{7}^{2} }}{2\Delta r}} & 0 \\ . & . & . & . & . & {} & { - \frac{{\gamma_{7}^{2} }}{2\Delta r}} & {\frac{{\gamma_{7}^{2} }}{r}} & {\frac{{\gamma_{7}^{2} }}{2\Delta r}} \\ 0 & . & . & 0 & 0 & 0 & 0 & 0 & 1 \\ \end{array} } \right]_{4n \times 4n}$$
(32)
$${\mathbf{N}} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 & . & . & . & . & . & . \\ 0 & { - \frac{{\gamma_{7}^{2} }}{r}} & 0 & 0 & . & . & . & . & . \\ 0 & 0 & { - \frac{{\gamma_{7}^{2} }}{r}} & 0 & 0 & . & . & . & . \\ 0 & 0 & 0 & { - \frac{{\gamma_{7}^{2} }}{r}} & 0 & . & . & . & . \\ {} & . & . & . & {} & . & . & . & . \\ . & . & . & . & . & . & . & . & . \\ . & . & . & . & {} & 0 & { - \frac{{\gamma_{7}^{2} }}{r}} & 0 & 0 \\ . & . & . & . & . & {} & 0 & { - \frac{{\gamma_{7}^{2} }}{r}} & 0 \\ 0 & . & . & 0 & 0 & 0 & 0 & 0 & 0 \\ \end{array} } \right]_{4n \times 4n}$$
(33)

where \(\gamma_{0} = \sqrt {\frac{{\int\limits_{0}^{\infty } {(\lambda_{s} - G_{s} )w\frac{dw}{{dz}}dz} }}{{\int\limits_{0}^{\infty } {(\lambda_{s} + 2G_{s} )wwdz} }}},\) \(\gamma_{1} = \frac{{\lambda_{s} + 3G_{s} }}{{\lambda_{s} + 2G_{s} }},\) \(\gamma_{2} = r_{p} \sqrt {\frac{{\int\limits_{0}^{\infty } {G_{s} \frac{dw}{{dz}}\frac{dw}{{dz}}dz} }}{{\int\limits_{0}^{\infty } {(\lambda_{s} + 2G_{s} )wwdz} }}},\)\(\gamma_{3} = \frac{{G_{s} + \lambda_{s} }}{{\lambda_{s} + 2G_{s} }},\) \(\gamma_{4} = \frac{{\lambda_{s} + 3G_{s} }}{{G_{s} }},\) \(\gamma_{5} = rp\sqrt {\frac{{\int\limits_{0}^{\infty } {G_{s} \frac{dw}{{dz}}\frac{dw}{{dz}}dz} }}{{\int\limits_{0}^{\infty } {G_{s} wwdz} }}},\) \(\gamma_{6} = \frac{{G_{s} + \lambda_{s} }}{{G_{s} }},\) \(\gamma_{7} = \sqrt {\frac{{\int\limits_{0}^{\infty } {(\lambda_{s} - G_{s} )w\frac{dw}{{dz}}dz} }}{{\int\limits_{0}^{\infty } {G_{s} wwdz} }}},\) \(\gamma_{8} = \sqrt {\frac{{\int\limits_{0}^{\infty } {(\lambda_{s} + 2G_{s} )\frac{dw}{{dz}}\frac{dw}{{dz}}dz} }}{{\int\limits_{0}^{\infty } {G_{s} wwdz} }}}.\)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Dai, G., Zhu, M. et al. Investigation of the soil deformation around laterally loaded deep foundations with large diameters. Acta Geotech. 19, 2293–2314 (2024). https://doi.org/10.1007/s11440-023-02012-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-02012-1

Keywords

Navigation