Skip to main content
Log in

Influence of ammonium sulfate leaching agent on engineering properties of weathered crust elution-deposited rare earth ore

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Rare earth resources in the weathered crust elution-deposited rare earth ore (WCEDRE-ore) are mainly recovered by in situ leaching process. A new understanding of the engineering properties modification of WCEDRE-ore as well as the occurring microscopic mechanism was presented when leaching using ammonium sulfate agent occurred. The soil–water chemical reactions in leaching had a significant impact on engineering properties (such as permeability and strength) of WCEDRE-ore, which determined the success or failure of in situ leaching process. To reveal the internal processes and effects of ammonium sulfate leaching on WCEDRE-ore, indoor tests including leaching tests, chemical analyses, triaxial tests and nuclear magnetic resonance (NMR) tests were conducted. The results show that: (1) Under the action of ion exchange and seepage, the dispersion, deposition and clogging of fine particles occurred repeatedly and alternately along the seepage direction. (2) During the leaching process, the total porosity of the ore samples rarely changed, but the migration of fine particles leads to the transformation of micropores, mesopores and macropores in weathered-ore soil samples as well as the change of pore connectivity. As a result, the permeability coefficient of the tested soil samples decreased significantly at the beginning of test and then rose slightly. (3) Increased salt content during the leaching process enhanced soil cementation and structure until the end of ion exchange. However, owing to the loose pore structure in the upper part of sample and the dense pore structure in the lower part of the tested specimen generated by particle migration, the strength of soil sample was weakened, which was conducive to the occurrence of shear failure in the upper part of sample.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Aiban SA, Al-Ahmadi HM, Asi IM, Siddique ZU, Al-Amoudi OSB (2006) Effect of geotextile and cement on the performance of sabkha subgrade. Build Environ 41:807–820. https://doi.org/10.1016/j.buildenv.2005.03.006

    Article  Google Scholar 

  2. Alshameri A, He H, Xin C, Zhu J, Xinghu W, Zhu R, Wang H (2019) Understanding the role of natural clay minerals as effective adsorbents and alternative source of rare earth elements: adsorption operative parameters. Hydrometallurgy 185:149–161. https://doi.org/10.1016/j.hydromet.2019.02.016

    Article  Google Scholar 

  3. Awedat AM, Zhu Y, Bennett JML, Raine SR (2021) The impact of clay dispersion and migration on soil hydraulic conductivity and pore networks. Geoderma 404:115297. https://doi.org/10.1016/j.geoderma.2021.115297

    Article  Google Scholar 

  4. Bennacer L, Ahfir ND, Alem A, Wang HQ (2017) Coupled effects of ionic strength, particle size, and flow velocity on transport and deposition of suspended particles in saturated porous media. Transp Porous Media 118:251–269. https://doi.org/10.1007/s11242-017-0856-6

    Article  MathSciNet  Google Scholar 

  5. Bradford SA, Kim H (2010) Implications of cation exchange on clay release and colloid-facilitated fransport in porous media. J Environ Qual 39:2040–2046. https://doi.org/10.2134/jeq2010.0156

    Article  Google Scholar 

  6. Chang D, Zhang L, Cheuk J (2014) Mechanical consequences of internal soil erosion. HKIE Trans 21:198–208. https://doi.org/10.1080/1023697X.2014.970746

    Article  Google Scholar 

  7. Chen R, Fu H, Yong S, Wang T, Gao B (2021) Characteristics and genetic analysis of landslide in rare earth leaching mining area. Jiangxi Build Mater 264:183–185

    Google Scholar 

  8. Chen X, Qi Y, Yin S, Li X, Xie F, Liu J, Chen W, Yan R (2019) Law of weakening mechanical properties of rare earth ore with leaching. J Cent South Univ (Sci Technol) 50:939–945. https://doi.org/10.11817/j.issn.1672-7207.2019.04.023

    Article  Google Scholar 

  9. Chen Y, Banin A, Borochovitch A (1983) Effect of potassium on soil structure in relation to hydraulic conductivity. Geoderma 30:135–147. https://doi.org/10.1016/0016-7061(83)90061-7

    Article  Google Scholar 

  10. Chen YG, Sun Z, Ye WM, Cui YJ (2017) Adsorptive removal of Eu(III) from simulated groundwater by GMZ bentonite on the repository conditions. J Radioanal Nucl Chem 311:1839–1847. https://doi.org/10.1007/s10967-017-5173-6

    Article  Google Scholar 

  11. Chen YG, Cai YQ, Pan K, Ye WM, Wang Q (2022) Influence of dry density and water salinity on the swelling pressure and hydraulic conductivity of compacted GMZ01 bentonite–sand mixtures. Acta Geotech 17:1879–1896. https://doi.org/10.1007/s11440-021-01305-7

    Article  Google Scholar 

  12. Chequer L, Bedrikovetsky P, Carageorgos T, Badalyan A, Gitis V (2019) Mobilization of attached clustered colloids in porous media. Water Resour Res 55:5696–5714. https://doi.org/10.1029/2018WR024504

    Article  Google Scholar 

  13. Chequer L, Russell T, Behr A, Genolet L, Kowollik P, Badalyan A, Zeinijahromi A, Bedrikovetsky P (2018) Non-monotonic permeability variation during colloidal transport: governing equations and analytical model. J Hydrol 557:547–560. https://doi.org/10.1016/j.jhydrol.2017.12.049

    Article  Google Scholar 

  14. Chi R, Tian J, Li Z, Peng C, Wu Y, Li S, Wang C, Zhou Z (2005) Existing state and partitioning of rare earth on weathered ores. J Rare Earths 23:756–759

    Google Scholar 

  15. Chitravel S, Otsubo M, Kuwano R (2021) Experimental study on stiffness degradation and monotonic response of reconstituted volcanic ash induced by internal erosion. Soils Found 61:1431–1452. https://doi.org/10.1016/j.sandf.2021.08.003

    Article  Google Scholar 

  16. Cozzarelli IM, Herman JS, Parnell RA (1987) The mobilization of aluminum in a natural soil system: effects of hydrologic pathways. Water Resour Res 23:859–874. https://doi.org/10.1029/WR023i005p00859

    Article  Google Scholar 

  17. Deng Z, Qin L, Wang G, Luo S, Peng C, Li Q (2019) Metallogenic process of ion adsorption REE ore based on the occurrence regularity of La in kaolin. Ore Geol Rev 112:103022. https://doi.org/10.1016/j.oregeorev.2019.103022

    Article  Google Scholar 

  18. Dikinya O, Hinz C, Aylmore G (2008) Decrease in hydraulic conductivity and particle release associated with self-filtration in saturated soil columns. Geoderma 146:192–200. https://doi.org/10.1016/j.geoderma.2008.05.014

    Article  Google Scholar 

  19. Ding W, Liu X, Hu F, Zhu H, Luo Y, Li S, Tian R, Bao B, Hang Li (2019) The effect of interactions between particles on soil infiltrability. J Soils Sedim 19:3489–3498. https://doi.org/10.1007/s11368-019-02318-2

    Article  Google Scholar 

  20. Dushyantha N, Batapola N, Ilankoon IMSK, Rohitha S, Premasiri R, Abeysinghe B, Ratnayake N, Dissanayake K (2020) The story of rare earth elements (REEs): occurrences, global distribution, genesis, geology, mineralogy and global production. Ore Geol Rev 122:103521. https://doi.org/10.1016/j.oregeorev.2020.103521

    Article  Google Scholar 

  21. Fan X, Xu Q, Scaringi G, Li S, Peng D (2017) A chemo-mechanical insight into the failure mechanism of frequently occurred landslides in the Loess Plateau, Gansu Province, China. Eng Geol 228:337–345. https://doi.org/10.1016/j.enggeo.2017.09.003

    Article  Google Scholar 

  22. Fang W, Jiang H, Jie Li, Li W, Junjian Li, Zhao L, Feng X (2016) A new experimental methodology to investigate formation damage in clay-bearing reservoirs. J Pet Sci Eng 143:226–234. https://doi.org/10.1016/j.petrol.2016.02.023

    Article  Google Scholar 

  23. Feng S, Chai J, Xu Z, Qin Y (2017) Evaluating the mesostructural changes of laboratory created soil-rock mixtures using a seepage test based on NMR technology. J Test Eval 46:879–891. https://doi.org/10.1520/JTE20160452

    Article  Google Scholar 

  24. Fu W, Luo P, Hu Z, Feng Y, Liu L, Yang J, Feng M, Yu H, Zhou Y (2019) Enrichment of ion-exchangeable rare earth elements by felsic volcanic rock weathering in South China: genetic mechanism and formation preference. Ore Geol Rev 114:103120. https://doi.org/10.1016/j.oregeorev.2019.103120

    Article  Google Scholar 

  25. Ge X, Fan Y, Xiao Y, Liu J, Xing D, Gu D, Deng S (2017) Quantitative evaluation of the heterogeneity for tight sand based on the nuclear magnetic resonance imaging. J Nat Gas Sci Eng 38:74–80. https://doi.org/10.1016/j.jngse.2016.12.037

    Article  Google Scholar 

  26. Goldenberg LC, Magaritz M, Mandel S (1983) Experimental investigation on irreversible changes of hydraulic conductivity on the seawater-freshwater interface in coastal aquifers. Water Resour Res 19:77–85. https://doi.org/10.1029/WR019i001p00077

    Article  Google Scholar 

  27. Grolimund D, Borkovec M (2006) Release of colloidal particles in natural porous media by monovalent and divalent cations. J Contam Hydrol 87:155–175. https://doi.org/10.1016/j.jconhyd.2006.05.002

    Article  Google Scholar 

  28. Grolimund D, Elimelech M, Borkovec M, Barmettler K, Kretzschmar R, Sticher H (1998) Transport of in situ mobilized colloidal particles in packed soil columns. Environ Sci Technol 32:3562–3569. https://doi.org/10.1021/es980356z

    Article  Google Scholar 

  29. Guo C, Cui Y (2020) Pore structure characteristics of debris flow source material in the Wenchuan earthquake area. Eng Geol 267:105499. https://doi.org/10.1016/j.enggeo.2020.105499

    Article  Google Scholar 

  30. Guo Z, Hussain F, Cinar Y (2015) Permeability variation associated with fines production from anthracite coal during water injection. Int J Coal Geol 147–148:46–57. https://doi.org/10.1016/j.coal.2015.06.008

    Article  Google Scholar 

  31. Guo ZQ, Lai YM, Jin JF, Zhou JR, Sun Z, Zhao K (2020) Effect of particle size and solution leaching on water retention behavior of ion-absorbed rare earth. Geofluids 2020:4921807. https://doi.org/10.1155/2020/4921807

    Article  Google Scholar 

  32. Hafhouf I, Bahloul O, Abbeche K (2022) Effects of drying-wetting cycles on the salinity and the mechanical behavior of sebkha soils. A case study from Ain M’Lila Algeria. CATENA 212:106099. https://doi.org/10.1016/j.catena.2022.106099

    Article  Google Scholar 

  33. Hao J, Qiao L, Liu Z, Li Q (2022) Effect of thermal treatment on physical and mechanical properties of sandstone for thermal energy storage: a comprehensive experimental study. Acta Geotech 17:3887–3908. https://doi.org/10.1007/s11440-022-01514-8

    Article  Google Scholar 

  34. He Q, Chen J, Gan L, Gao M, Zan M, Xiao Y (2022) Insight into leaching of rare earth and aluminum from ion adsorption type rare earth ore: adsorption and desorption. J Rare Earths. https://doi.org/10.1016/j.jre.2022.08.009

    Article  Google Scholar 

  35. He Z, Zhang Z, Yu J, Xu Z, Xu Y, Zhou F, Chi R (2016) Column leaching process of rare earth and aluminum from weathered crust elution-deposited rare earth ore with ammonium salts. Trans Nonferrous Met Soc China 26:3024–3033. https://doi.org/10.1016/S1003-6326(16)64433-3

    Article  Google Scholar 

  36. He Z, Zhang R, Nie W, Zhang Z, Chi R, Xu Z, Wu M, Qu J (2019) Leaching process and mechanism of weathered crust elution-deposited rare earth ore. Min Metall Explor 36:1021–1031. https://doi.org/10.1007/s42461-019-00116-5

    Article  Google Scholar 

  37. Hu W, Cheng WC, Wen S, Mizanur Rahman M (2021) Effects of chemical contamination on microscale structural characteristics of intact loess and resultant macroscale mechanical properties. CATENA 203:105361. https://doi.org/10.1016/j.catena.2021.105361

    Article  Google Scholar 

  38. Hu W, Hicher PY, Scaringi G, Xu Q, Van Asch TWJ, Wang G (2018) Seismic precursor to instability induced by internal erosion in loose granular slopes. Geotechnique 68:989–1001. https://doi.org/10.1680/jgeot.17.P.079

    Article  Google Scholar 

  39. Hu W, Scaringi G, Xu Q, Pei Z, Van Asch TWJ, Hicher PY (2017) Sensitivity of the initiation and runout of flowslides in loose granular deposits to the content of small particles: an insight from flume tests. Eng Geol 231:34–44. https://doi.org/10.1016/j.enggeo.2017.10.001

    Article  Google Scholar 

  40. Huang S, Feng J, Yu J, Wang Y, Liu J, Chi R, Hou H (2021) Adsorption and desorption performances of ammonium on the weathered crust elution-deposited rare earth ore. Colloids Surf A Physicochem Eng Asp 613:126139. https://doi.org/10.1016/j.colsurfa.2021.126139

    Article  Google Scholar 

  41. Huang XW, Long ZQ, Wang LS, Feng ZY (2015) Technology development for rare earth cleaner hydrometallurgy in China. Rare Met 34:215–222. https://doi.org/10.1007/s12598-015-0473-x

    Article  Google Scholar 

  42. Jiang M, Zhang F, Hu H, Cui Y, Peng J (2014) Structural characterization of natural loess and remolded loess under triaxial tests. Eng Geol 181:249–260. https://doi.org/10.1016/j.enggeo.2014.07.021

    Article  Google Scholar 

  43. Kim I, Taghavy A, DiCarlo D, Huh C (2015) Aggregation of silica nanoparticles and its impact on particle mobility under high-salinity conditions. J Pet Sci Eng 133:376–383. https://doi.org/10.1016/j.petrol.2015.06.019

    Article  Google Scholar 

  44. Lei X, Yang Z, He S, Liu E, Wong H, Li X (2017) Numerical investigation of rainfall-induced fines migration and its influences on slope stability. Acta Geotech 12:1431–1446. https://doi.org/10.1007/s11440-017-0600-y

    Article  Google Scholar 

  45. Li M, Wang D, Shao Z (2020) Experimental study on changes of pore structure and mechanical properties of sandstone after high-temperature treatment using nuclear magnetic resonance. Eng Geol 275:105739. https://doi.org/10.1016/j.enggeo.2020.105739

    Article  Google Scholar 

  46. Li P, Xie W, Pak RYS, Vanapalli SK (2019) Microstructural evolution of loess soils from the Loess Plateau of China. CATENA 173:276–288. https://doi.org/10.1016/j.catena.2018.10.006

    Article  Google Scholar 

  47. Ligeiro TS, Vaz A, Chequer L (2022) Forecasting the impact of formation damage on relative permeability during low-salinity waterflooding. J Pet Sci Eng 208:109500. https://doi.org/10.1016/j.petrol.2021.109500

    Article  Google Scholar 

  48. Liu D, Zhang Z, Chi R (2020) Seepage mechanism during in-situ leaching process of weathered crust elution-deposited rare earth ores with magnesium salt. Physicochem Probl Miner Process 56:350–362. https://doi.org/10.37190/ppmp/117925

    Article  Google Scholar 

  49. Liu G, Xue W, Wang J, Liu X (2019) Transport behavior of variable charge soil particle size fractions and their influence on cadmium transport in saturated porous media. Geoderma 337:945–955. https://doi.org/10.1016/j.geoderma.2018.11.016

    Article  Google Scholar 

  50. Liu JK, Yu QM, Liu JY, Wang DY (2017) Influence of non-uniform distribution of fine soil on mechanical properties of coarse-grained soil. Chin J Geotech Eng 39:562–572. https://doi.org/10.11779/CJGE201703022

    Article  Google Scholar 

  51. Luo SH, Huang QQ, Wang GS, Shi-Li HU, Hong BG (2014) Permeability change rule of ion-adsorption rare-earth in ore leaching process. Nonferrous Met Sci Eng 5:95–99. https://doi.org/10.13264/j.cnki.ysjskx.2014.02.017

    Article  Google Scholar 

  52. Luxmoore RJ (1981) Micro-, Meso-, and macroporosity of soil. Soil Sci Soc Am J 45:671–672. https://doi.org/10.2136/sssaj1981.03615995004500030051x

    Article  Google Scholar 

  53. Moldoveanu GA, Papangelakis VG (2012) Recovery of rare earth elements adsorbed on clay minerals: I. Desorption mechanism. Hydrometallurgy 117–118:71–78. https://doi.org/10.1016/j.hydromet.2012.02.007

    Article  Google Scholar 

  54. Mukai H, Kon Y, Sanematsu K, Takahashi Y, Ito M (2020) Microscopic analyses of weathered granite in ion-adsorption rare earth deposit of Jianxi Province, China. Sci Rep 10:1–11. https://doi.org/10.1038/s41598-020-76981-8

    Article  Google Scholar 

  55. Muneer R, Hashmet MR, Pourafshary P (2022) Predicting the critical salt concentrations of monovalent and divalent brines to initiate fines migration using DLVO modeling. J Mol Liq 352:118690. https://doi.org/10.1016/j.molliq.2022.118690

    Article  Google Scholar 

  56. Nan J, Peng J, Zhu F, Ma P, Liu R, Leng Y, Meng Z (2021) Shear behavior and microstructural variation in loess from the Yan’an area China. Eng Geol 280:105964. https://doi.org/10.1016/j.enggeo.2020.105964

    Article  Google Scholar 

  57. Nguyen CD, Benahmed N, Andò E, Sibille L, Philippe P (2019) Experimental investigation of microstructural changes in soils eroded by suffusion using X-ray tomography. Acta Geotech 14:749–765. https://doi.org/10.1007/s11440-019-00787-w

    Article  Google Scholar 

  58. Nie W, Zhang R, He Z, Zhou J, Wu M, Xu Z, Chi R, Yang H (2020) Research progress on leaching technology and theory of weathered crust elution-deposited rare earth ore. Hydrometallurgy 193:105295. https://doi.org/10.1016/j.hydromet.2020.105295

    Article  Google Scholar 

  59. Nikam PS, Aber JS, Kharat SJ (2008) Viscosities of ammonium sulfate, potassium sulfate, and aluminum sulfate in water and water + N, N-dimethylformamide mixtures at different temperatures. J Chem Eng Data 53:2469–2472. https://doi.org/10.1021/je800330d

    Article  Google Scholar 

  60. SGTM (2019) Standard for geotechnical testing method (GB/T 50123-2019) National Standards of People’s Republic of China. China Planning Press, Beijing

    Google Scholar 

  61. Shen Y, Wang Y, Wei X, Jia H, Yan R (2020) Investigation on meso-debonding process of the sandstone–concrete interface induced by freeze–thaw cycles using NMR technology. Constr Build Mater 252:118962. https://doi.org/10.1016/j.conbuildmat.2020.118962

    Article  Google Scholar 

  62. Shi XS, Herle I (2017) Laboratory investigation of two basic configurations for inhomogeneous soils. Eur J Environ Civ Eng 21:206–237. https://doi.org/10.1080/19648189.2015.1110056

    Article  Google Scholar 

  63. Starr JL, Parlange J-Y (1979) Dispersion in soil columns: the snow plow effect. Soil Sci Soc Am J 43:448–450. https://doi.org/10.2136/sssaj1979.03615995004300030005x

    Article  Google Scholar 

  64. Taboada MA, Micucci FG, Cosentino DJ, Lavado RS (1998) Comparison of compaction induced by conventional and zero tillage in two soils of the Rolling Pampa of Argentina. Soil Tillage Res 49:57–63. https://doi.org/10.1016/S0167-1987(98)00132-9

    Article  Google Scholar 

  65. Tang J, Qiao J, Xue Q, Liu F, Fan X, Liu S, Huang Y (2021) Behavior and mechanism of different fraction lead leach with several typical sulfate lixiviants in the weathered crust elution-deposited rare earth ore. Environ Sci Pollut Res 28:31885–31894. https://doi.org/10.1007/s11356-021-13039-w

    Article  Google Scholar 

  66. Tanner S, Katra I, Argaman E, Ben-Hur M (2021) Mechanisms and processes affecting aggregate stability and saturated hydraulic conductivity of top and sublayers in semi-arid soils. Geoderma 404:115304. https://doi.org/10.1016/j.geoderma.2021.115304

    Article  Google Scholar 

  67. Tian H, Wei C, Wei H, Yan R, Chen P (2014) An NMR-based analysis of soil-water characteristics. Appl Magn Reson 45:49–61. https://doi.org/10.1007/s00723-013-0496-0

    Article  Google Scholar 

  68. Tian J, Tang X, Yin J, Luo X, Rao G, Jiang M (2013) Process optimization on leaching of a lean weathered crust elution-deposited rare earth ores. Int J Miner Process 119:83–88. https://doi.org/10.1016/j.minpro.2013.01.004

    Article  Google Scholar 

  69. Vahidi E, Navarro J, Zhao F (2016) An initial life cycle assessment of rare earth oxides production from ion-adsorption clays. Resour Conserv Recycl 113:1–11. https://doi.org/10.1016/j.resconrec.2016.05.006

    Article  Google Scholar 

  70. Valmacco V, Elzbieciak-Wodka M, Herman D, Trefalt G, Maroni P, Borkovec M (2016) Forces between silica particles in the presence of multivalent cations. J Colloid Interface Sci 472:108–115. https://doi.org/10.1016/j.jcis.2016.03.043

    Article  Google Scholar 

  71. Wang C, Wang R, Huo Z, Xie E, Dahlke HE (2020) Colloid transport through soil and other porous media under transient flow conditions: a review. Wiley Interdiscip Rev Water 7:e1439. https://doi.org/10.1002/wat2.1439

    Article  Google Scholar 

  72. Wang G, Xu J, Ran L, Zhu R, Ling B, Liang X, Kang S, Wang Y, Wei J, Ma L, Zhuang Y, Zhu J, He H (2023) A green and efficient technology to recover rare earth elements from weathering crusts. Nat Sustain 6:81–92. https://doi.org/10.1038/s41893-022-00989-3

    Article  Google Scholar 

  73. Wang X, Wang H, Sui C, Zhou L, Feng X, Huang C, Kui Z, Zhong W, Hu K (2020) Permeability and adsorption–desorption behavior of rare earth in laboratory leaching tests. Minerals 10:889. https://doi.org/10.3390/min10100889

    Article  Google Scholar 

  74. Wen BP, Yan YJ (2014) Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China. Eng Geol 168:46–58. https://doi.org/10.1016/j.enggeo.2013.10.023

    Article  Google Scholar 

  75. Xiao Y, Gao G, Huang L, Feng Z, Lai F, Long Z (2018) A discussion on the leaching process of the ion-adsorption type rare earth ore with the electrical double layer model. Miner Eng 120:35–43. https://doi.org/10.1016/j.mineng.2018.02.015

    Article  Google Scholar 

  76. Xu P, Qian H, Zhang Q, Zheng L (2021) Exploring the saturated permeability of remolded loess under inorganic salt solution seepage. Eng Geol 294:106354. https://doi.org/10.1016/j.enggeo.2021.106354

    Article  Google Scholar 

  77. Xu P, Zhang Q, Qian H, Guo M, Yang F (2021) Investigating the mechanism of pH effect on saturated permeability of remolded loess. Eng Geol 284:105978. https://doi.org/10.1016/j.enggeo.2020.105978

    Article  Google Scholar 

  78. Xu P, Zhang Q, Qian H, Qu W, Li M (2021) Microstructure and permeability evolution of remolded loess with different dry densities under saturated seepage. Eng Geol 282:105875. https://doi.org/10.1016/j.enggeo.2020.105875

    Article  Google Scholar 

  79. Xu P, Zhang Q, Qian H, Yang F, Zheng L (2021) Exploring the geochemical mechanism for the saturated permeability change of remolded loess. Eng Geol 284:105927. https://doi.org/10.1016/j.enggeo.2020.105927

    Article  Google Scholar 

  80. Yan H, Liang T, Liu Q, Qiu T, Ai G (2018) Compound leaching behavior and regularity of ionic rare earth ore. Powder Technol 333:106–114. https://doi.org/10.1016/j.powtec.2018.04.010

    Article  Google Scholar 

  81. Yang D, Yan R, Ma T, Wei C (2023) Compressive behavior of kaolinitic clay under chemo-mechanical loadings. Acta Geotech 18:77–94. https://doi.org/10.1007/s11440-022-01554-0

    Article  Google Scholar 

  82. Yang J, Yin ZY, Laouafa F, Hicher PY (2019) Modeling coupled erosion and filtration of fine particles in granular media. Acta Geotech 14:1615–1627. https://doi.org/10.1007/s11440-019-00808-8

    Article  Google Scholar 

  83. Yang L, Wang D, Li C, Sun Y, Zhou X, Li Y (2018) Searching for a high efficiency and environmental benign reagent to leach ion-adsorption rare earths based on the zeta potential of clay particles. Green Chem 20:4528–4536. https://doi.org/10.1039/c8gc01569d

    Article  Google Scholar 

  84. Yang XJ, Lin A, Li XL, Wu Y, Zhou W, Chen Z (2013) China’s ion-adsorption rare earth resources, mining consequences and preservation. Environ Dev 8:131–136. https://doi.org/10.1016/j.envdev.2013.03.006

    Article  Google Scholar 

  85. Yang Y, Yuan W, Hou J, You Z (2022) Review on physical and chemical factors affecting fines migration in porous media. Water Res 214:118172. https://doi.org/10.1016/j.watres.2022.118172

    Article  Google Scholar 

  86. Yao H, She J, Lu Z, Luo X, Xian S, Fang R, Chen Z (2020) Inhibition effect of swelling characteristics of expansive soil using cohesive non-swelling soil layer under unidirectional seepage. J Rock Mech Geotech Eng 12:188–196. https://doi.org/10.1016/j.jrmge.2019.07.008

    Article  Google Scholar 

  87. Yin SH, Qi Y, Xie FF, Chen X, Wang LM (2018) Porosity characteristic of leaching weathered crust elution-deposited rare earth before and after leaching. Chin J Nonferrous Met 28:2112–2119. https://doi.org/10.19476/j.ysxb.1004.0609.2018.10.19

    Article  Google Scholar 

  88. Yin SH, Qi Y, Xie FF, Chen X, Wang LM, Shao YJ (2018) Strength characteristics of weathered crust elution-deposited rare earthores with different porosity ratios. Chin J Eng 40:159–166. https://doi.org/10.13374/j.issn2095-9389.2018.02.005

    Article  Google Scholar 

  89. Yu L, Yao Q, Chong Z, Li Y, Xu Q, Xie H, Ye P (2022) Mechanical and micro-structural damage mechanisms of coal samples treated with dry–wet cycles. Eng Geol 304:106637. https://doi.org/10.1016/j.enggeo.2022.106637

    Article  Google Scholar 

  90. Yu M, Hussain F, Arns JY, Bedrikovetsky P, Genolet L, Behr A, Kowollik P, Arns CH (2018) Imaging analysis of fines migration during water flow with salinity alteration. Adv Water Resour 121:150–161. https://doi.org/10.1016/j.advwatres.2018.08.006

    Article  Google Scholar 

  91. Zhang P, Tao K, Yang Z (1995) Study on material composition and REE-host forms of ion-type RE deposits in South China. J Rare Earths 13:37–41

    Google Scholar 

  92. Zhang Y, Zhang B, Yang S, Zhong Z, Zhou H, Luo X (2021) Enhancing the leaching effect of an ion-absorbed rare earth ore by ameliorating the seepage effect with sodium dodecyl sulfate surfactant. Int J Min Sci Technol 31:995–1002. https://doi.org/10.1016/j.ijmst.2021.06.002

    Article  Google Scholar 

  93. Zhang Z, He Z, Yu J, Xu Z, Chi R (2016) Novel solution injection technology for in-situ leaching of weathered crust elution-deposited rare earth ores. Hydrometallurgy 164:248–256. https://doi.org/10.1016/j.hydromet.2016.06.015

    Article  Google Scholar 

  94. Zhang ZY, He ZY, Zhou F, Bin ZC, Sun NJ, Chi RA (2018) Swelling of clay minerals in ammonium leaching of weathered crust elution-deposited rare earth ores. Rare Met 37:72–78. https://doi.org/10.1007/s12598-017-0977-7

    Article  Google Scholar 

  95. Zheng H, Wang D, Behringer RP (2019) Experimental study on granular biaxial test based on photoelastic technique. Eng Geol 260:105208. https://doi.org/10.1016/j.enggeo.2019.105208

    Article  Google Scholar 

  96. Zheng H, Wang D, Tong X, Li L, Behringer RP (2019) Granular scale responses in the shear band region. Granul Matter 21:1–6. https://doi.org/10.1007/s10035-019-0958-7

    Article  Google Scholar 

  97. Zhong W, Ouyang J, Yang D, Wang X, Guo Z, Hu K (2022) Effect of the in situ leaching solution of ion-absorbed rare earth on the mechanical behavior of basement rock. J Rock Mech Geotech Eng 14:1210–1220. https://doi.org/10.1016/j.jrmge.2021.12.002

    Article  Google Scholar 

  98. Zhou F, Liu Q, Feng J, Su J, Liu X, Chi R (2019) Role of initial moisture content on the leaching process of weathered crust elution-deposited rare earth ores. Sep Purif Technol 217:24–30. https://doi.org/10.1016/j.seppur.2019.02.010

    Article  Google Scholar 

  99. Zhou J, Zheng X, Flury M, Lin G (2009) Permeability changes during remediation of an aquifer affected by sea-water intrusion: a laboratory column study. J Hydrol 376:557–566. https://doi.org/10.1016/j.jhydrol.2009.07.067

    Article  Google Scholar 

  100. Zhu Y, Bennett JML, Marchuk A (2019) Reduction of hydraulic conductivity and loss of organic carbon in non-dispersive soils of different clay mineralogy is related to magnesium induced disaggregation. Geoderma 349:1–10. https://doi.org/10.1016/j.geoderma.2019.04.019

    Article  Google Scholar 

  101. Zhuang J, Peng J, Zhu Y, Leng Y, Zhu X, Huang W (2021) The internal erosion process and effects of undisturbed loess due to water infiltration. Landslides 18:629–638. https://doi.org/10.1007/s10346-020-01518-z

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 52174113, 51874148, 52004106 and 51904119), the Program of Qingjiang Excellent Young Talents of Jiangxi University of Science and Technology, the Young Jinggang Scholars Award Program in Jiangxi Province (QNJG2018051, QNJG2019054), the Innovative Leading Talents Program in Ganzhou ([2020]60), the “Thousand Talents” of Jiangxi Province (jxsq2019201043), and Graduate Innovative Special Fund Projects of Jiangxi Province (YC2020-S436).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaojun Wang.

Ethics declarations

Conflict of interest

The authors declare they have no financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Wang, X., Wang, Y. et al. Influence of ammonium sulfate leaching agent on engineering properties of weathered crust elution-deposited rare earth ore. Acta Geotech. 19, 2041–2062 (2024). https://doi.org/10.1007/s11440-023-01999-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01999-x

Keywords

Navigation