Skip to main content

Advertisement

Log in

Mechanical and microstructure analysis of mass-stabilized organic clay thermally cured using a ternary binder

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The technique of mass soil stabilization using alternative binders to Portland cement (PC) has been used successfully in the past. However, knowledge gaps exist regarding the design of these binders. Ground-granulated blast furnace slag (GGBS) has been widely used as a substitute for PC; however, it requires an alkaline activator (e.g. lime and PC) to promote pozzolanic reaction and strength enhancement. A candidate that presents a less energy-intensive manufacturing and carbon footprint is carbide lime (CL), a by-product of acetylene gas production, rich in Ca(OH)2. The main problem with the pozzolanic binder in the stabilization technique is its slow reaction kinetics and the long time required for laboratory-scale investigations before in situ application. Therefore, this research presents a dosing study of a ternary binder (TB) comprising CL, GGBS and PC type III (CEM-III) to mass-stabilize a clayey organic soil using thermal curing as an innovative technique to improve the feasibility of laboratory-scale investigations. The effects of binder composition and thermal curing time on the evolution of strength, stiffness, mineralogy, and microstructure were determined. The results, supported by a statistical analysis (ANOVA) and by a multivariate regression analysis (MRA), have shown that the new TB produced a superior mechanical response to soil samples stabilized exclusively with CEM-III. This was evidenced by a less porous microstructure (more reaction products) and mainly the formation of a C–A–S–H gel, as a product of CEM-III hydration and alkaline activation of GGBS (blended cement), whereby the CL content played a key role for the development of the long-term pozzolanic reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Abdila SR, Abdullah MMAB, Ahmad R, Burduhos Nergis DD, Rahim SZA, Omar MF, Sandu AV, Vizureanu P (2022) Potential of soil stabilization using ground granulated blast furnace slag (GGBFS) and fly ash via geopolymerization method: a review. Materials 15:375. https://doi.org/10.3390/ma15010375

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  2. Adesina A (2020) Recent advances in the concrete industry to reduce its carbon dioxide emissions. Environ Chall 1:100004. https://doi.org/10.1016/j.envc.2020.100004

    Article  Google Scholar 

  3. Ahmad A, Sutanto MH, Ahmad NR, Bujang M, Mohamad ME (2021) The implementation of industrial byproduct in Malaysian peat improvement: a sustainable soil stabilization approach. Materials 14:7315. https://doi.org/10.3390/ma14237315

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  4. Ahmed HU, Mohammed AS, Mohammed AA, Faraj RH (2021) Systematic multiscale models to predict the compressive strength of fly ash-based geopolymer concrete at various mixture proportions and curing regimes. PLoS ONE 16(6):e0253006. https://doi.org/10.1371/journal.pone.0253006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ahnberg H, Bengstsson PE, Holm G (2001) Effect of initial loading on the strength of stabilised peat. Ground Improv 5:35–40

    Article  Google Scholar 

  6. Ahnberg H, Johansson S, Pihl H, Carlsson T (2003) Stabilising effects of different binders in some Swedish soil. Ground Improv 7:9–27

    Article  Google Scholar 

  7. Alexandre E, Luz CA (2020) Substituição parcial do cimento CPV-ARI por lodo de estação de tratamento de água (ETA) (in portuguese). Matéria 25 (1)

  8. Almeida MSS, Marques MES (2013) Design and performance of embankments on very soft soils. CRC Press Taylor & Francis Group

    Book  Google Scholar 

  9. ASTM (2014) Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer. ASTM D854-14 West Conshohocken Philadelphia

  10. ASTM (2015) Standard Practice for Classification of Soils and Soil-Aggregate Mixtures for Highway Construction Purposes. ASTM D3282-15 West Conshohocken Philadelphia

  11. ASTM (2017a) Standard practice for classification of soils for engineering purposes (Unified Soil Classification System). ASTM D2487-17e1 West Conshohocken Philadelphia

  12. ASTM (2017b) Standard Test Method for Particle-Size Distribution (Gradation) of Fine-Grained Soils Using the Sedimentation (Hydrometer) Analysis. ASTM D7928-17 West Conshohocken Philadelphia

  13. ASTM (2017c) Standard Test Method for Particle-Size Distribution (Gradation) of Soils Using Sieve Analysis. ASTM D6913-17 West Conshohocken Philadelphia

  14. ASTM (2017d) Standard Test Methods for Compressive Strength of Molded Soil-Cement Cylinders. ASTM D1633-17 West Conshohocken Philadelphia

  15. ASTM (2018) Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils. ASTM D4318-17e1 West Conshohocken Philadelphia

  16. ASTM (2019a) Standard Test Methods for pH of Soils. ASTM D4972-19 West Conshohocken Philadelphia

  17. ASTM (2019b) Standard specification for Portland cement. ASTM C150 West Conshohocken Philadelphia

  18. ASTM (2019c) Standard Test Methods for Laboratory Determination of Water (Moisture) Content of Soil and Rock by Mass. ASTM D2216-19 West Conshohocken Philadelphia

  19. ASTM (2020) Standard Test Methods for Determining the Water (Moisture) Content, Ash Content, and Organic Material of Peat and Other Organic Soils. ASTM D2974-20e1 West Conshohocken Philadelphia

  20. Axelsson K, Johansson S, Andersson R (2002) Stabilization of organic soils by cement and pozzolanic reactions–Feasibility study. Report 3 Swedish Deep Stabilization Research Centre

  21. Bate B, Zhao Q, Burns S (2014) Impact of organic coatings on the frictional strength of organically modified clay. J Geotech Geoenviron Eng 140(1):228–236

    Article  CAS  Google Scholar 

  22. Bergado DT, Anderson LR, Miura N, Balasubramanian AS (1996) Soft ground improvement in lowland and other environments. American Society of Civil Engineers–ASCE Press Reston VA

  23. Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD, Brice DG, Kilcullen AR, Duxson P, van Deventer JSJ (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144

    Article  CAS  Google Scholar 

  24. BS (2006) Ground granulated blast furnace slag for use in concrete, mortar and grout–Part 1: Definitions, specifications and conformity criteria. British Standard BS EN 15167-1:2006 United Kingdom

  25. Bruschi GS, Santos CP, Ferrazzo ST, Araújo MT, Consoli NC (2021) Parameters controlling loss of mass and stiffness degradation of green stabilized bauxite tailings. In: Proceedings of the institution of civil engineers-geotechnical engineering, pp 1–21. https://doi.org/10.1680/jgeen.21.00119

  26. Camarini G (1995) Desempenho de misturas cimento Portland e escória de alto-forno submetidas a cura térmica (in portuguese). Tese (doutorado)–USP–Programa de Pós-Graduação em Engenharia Civil

  27. Cardoso FA, Fernandes HC, Pileggi RG, Cincotto MA, Vanderley MJ (2009) Carbide lime and industrial hydrated lime characterization. Powder Technol 195:143–149

    Article  CAS  Google Scholar 

  28. Castellano CC, Bonavetti VL, Irassar EF (2010) Influence of curing temperature: hydration and strength of cement paste with granulated blast furnace. Matéria 15(4):516–526. https://doi.org/10.1590/S1517-70762010000400004

    Article  CAS  Google Scholar 

  29. Chen H, Wang Q (2006) The behavior of organic matter in the process of soft soil stabilization using cement. Eng Geo Environ 65(4):445–448

    Article  CAS  Google Scholar 

  30. Cirino MAG (2016) Estudo de pastas de cimento Portland com adições de cinzas de carvão mineral para uso na cimentação de poços de petróleo (in Portuguese). Dissertação (Mestrado) Universidade Federal do Ceará

  31. Coelho MAM, Silva MG, Souza FLS, Sarmento R, Zandonade E, Marimoto T, Helmer JL (2006) Estudo das propriedades e avaliação ambiental de estrutura hidráulica confeccionada com escória de alto-forno ativada quimicamente (in portuguese). SEMENGO

  32. Corrêa-Silva M, Miranda T, Rouainia M, Araújo N, Glendinning S, Cristelo N (2020) Geomechanical behaviour of a soft soil stabilised with alkali-activated blast-furnace slags. J Clean Prod 267:122017. https://doi.org/10.1016/j.jclepro.2020.122017

    Article  CAS  Google Scholar 

  33. Consoli NC, Foppa D, Festugato L, Heineck KS (2007) Key parameters for strength control of artificially cemented soils. J Geotech Geoenviron Eng 133(2):197–205. https://doi.org/10.1061/(ASCE)1090-0241(2007)

    Article  Google Scholar 

  34. Consoli NC, Lopes LS Jr, Heineck KS (2009) Key parameters for the strength control of lime stabilized soils. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:5(210)

    Article  Google Scholar 

  35. Consoli NC, Cruz RC, Floss MF, Festugato L (2010) Parameters controlling tensile and compressive strength of artificially cemented sand. J Geotech Geoenviron Eng 136(5):759–763. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000278

    Article  Google Scholar 

  36. Consoli NC, Rosa AD (2010b) Parameters controlling strength of coal fly ash-lime improved soil. In: GeoFlorida 2010: advances in analysis modelling e design, pp 89–98

  37. Consoli NC, Rosa AD, Corte MB, Lopes LS Jr, Consoli BS (2011) Porosity cement ratio controlling strength of artificially cemented clays. J Mater Civ Eng 23(8):1249–1254. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000283

    Article  CAS  Google Scholar 

  38. Consoli NC, Rosa AD, Saldanha RB (2011) Parameters controlling strength of industrial waste-lime amended soil. Soils Found 51(2):265–273

    Article  Google Scholar 

  39. Consoli NC (2014) A method proposed for the assessment of failure envelopes of cemented sandy soils. Eng Geol 169:61–68

    Article  Google Scholar 

  40. Consoli NC, Rocha CG, Saldanha RB (2014) Coal fly ash – carbide lime bricks: An environment friendly building product. Constr Build Mater 69(2014b):301–309

    Article  CAS  Google Scholar 

  41. Consoli NC, da Rocha CG, Silvani C (2014) Effect of curing temperature on the strength of sand, coal fly ash, and lime blends. J Mater Civ Eng 26(8):06014015

    Article  Google Scholar 

  42. Consoli NC, Ferreira PM, Tang C, Marques SFV, Festugato L, Corte MB (2016) A unique relationship determining strength of silty/clayey soils: Portland cement mixes. Soils Found 56(6):1082–1088

    Article  Google Scholar 

  43. Consoli NC, Paula TM, Bortolotto MS, Barros LM, Pereira F, Rocha MM (2017) Coal fly ash–carbide lime admixtures as an alternative to concrete masonry blocks: Influence of ash ground. J Mater Civ Eng 29(2):04016224

    Article  Google Scholar 

  44. Consoli NC, Winter D, Leon HB, Scheuermann Filho HC (2018) Durability, strength, and stiffness of green stabilized sand. J Geotech Geoenviron Eng 144(9):04018057. https://doi.org/10.1061/(asce)gt.1943-5606.0001928

    Article  CAS  Google Scholar 

  45. Consoli NC, Carretta MS, Leon HB, Scheuermann Filho HC, Tomasi LF (2019) Strength and stiffness of ground waste glass-carbide lime blends. J Mater Civ Eng 31(10):06019010

    Article  CAS  Google Scholar 

  46. Consoli NC, Saldanha RB, Scheuermann Filho HC (2019) Short- and long-term effects of sodium chloride on strength and durability of coal fly ash stabilized with carbide lime. Can Geotech J 56(12):1929–1939. https://doi.org/10.1139/cgj-2018-0696

    Article  CAS  Google Scholar 

  47. Consoli NC, Daassi-Gli CAP, Ruver CA, Lotero A, Scheuermann Filho HC, Moncaleano CJ, Lourenço DE (2021) Lime-ground glass-sodium hydroxide as an enhanced sustainable binder stabilizing silica sand. J Geotech Geoenviron Eng 147(10):06021011

    Article  CAS  Google Scholar 

  48. Consoli NC, Vogt JC, Silva JPS, Chaves HM, Scheuermann Filho HC, Moreira EB, Lotero A (2022) Behaviour of compacted filtered iron ore tailings-portland cement blends: New Brazilian trend for tailings disposal by stacking. Appl Sci 12:836. https://doi.org/10.3390/app12020836

    Article  CAS  Google Scholar 

  49. Consoli NC, Silvano LW, Lotero A, Scheuermann Filho HC, Moncaleano CJ, Cristelo N (2022) Key parameters establishing alkali activation effects on stabilized rammed earth. Constr Build Mater 345:128299. https://doi.org/10.1016/j.conbuildmat.2022.128299

    Article  CAS  Google Scholar 

  50. Cyr M, Patapy C (2016) Synergic effects of activation routes of ground granulated blast-furnace slag (GGBS) used in the precast industry. HAL Open Science

  51. Davidson LK, Demirel T, Handy RI (1965) Soil pulverization and lime migration in soil lime stabilization. Highway Res Rec 92:103–126

    Google Scholar 

  52. Escalante JI, Gómez L, Ojal KK, Mendoza G, Mancha H, Méndez J (2001) Reactivity of blast-furnace slag in portland cement blends hydrated under different conditions. Cem Concr Res 31(10):1403–1409

    Article  CAS  Google Scholar 

  53. Escalante-García JI, Sharp JH (2001) The microstructure and mechanical properties of blended cements hydrated at various temperatures. Cem Concr Res 31(5):695–702

    Article  Google Scholar 

  54. EuroSoilStab (2010) Design guide: Soft soil stabilization. Development of design and construction methods to stabilize soft organic soils. IHS BRE Press ISBN-1860815995

  55. Fasihnikoutalab MH, Pourakbar S, Ball RJ, Unluer C, Cristelo N (2020) Sustainable soil stabilisation with ground granulated blast-furnace slag activated by olivine and sodium hydroxide. Acta Geotech 15:1981–1991. https://doi.org/10.1007/s11440-019-00884-w

    Article  Google Scholar 

  56. Fernández-Jiménez A, Puertas I, Sobrados SJ (2003) Structure of calcium silicate crucial insights on the mix design of alkali-activated cement-based binders hydrates formed in alkaline-activated slag: Influence of the type of alkaline activator. J Am Ceram Soc 86(8):1389–1394

    Article  Google Scholar 

  57. Fernández-Jiménez A, Palomo A, Criado M (2006) Alkali activated fly ash binders: a comparative study between sodium and potassium activators. Mater Construcc 56:51–65

    Google Scholar 

  58. Firat S, Khatib JM, Yilmaz G, Comert AT (2017) Effect of curing time on selected properties of soil stabilized with fly ash, marble dust and waste sand for road sub-base materials. Waste Manage Res. https://doi.org/10.1177/0734242X17705726

    Article  Google Scholar 

  59. Forsman J, Jyrävä H, Lahtinen P, Niemelin T, Hyvönen I (2015) Mass stabilization manual. Finland

  60. Fournier M, Geoffray J-M (1978) Le Liant pouzzolanes-chaux. Bulletin de Liaison des Laboratoires des Ponts et Chaussees No 93:70–78

    CAS  Google Scholar 

  61. Franus W, Panek R, Wdowin M (2015) SEM Investigation of Microstructures in Hydration Products of Portland Cement. In: 2nd International multidisciplinary microscopy and microanalysis congress, pp 105–112

  62. Galuppo MV (2020) Estudo do emprego da escória granulada de alto-forno na massa de cerâmica de revestimento (in portuguese). Dissertação (Mestrado) Instituto Federal do Espírito Santo Brazil

  63. Garcia-Lodeiro I, Fernández-Jimenez A, Palomo A (2015) Cements with a low clinker content: versatile use of raw materials. J Sustain Cem Based Mater 4(2):140–151. https://doi.org/10.1080/21650373.2015.1040865

    Article  CAS  Google Scholar 

  64. Ghosh A, Ransinchung GD (2022) Application of machine learning algorithm to assess the efficacy of varying industrial wastes and curing methods on strength development of geopolymer concrete. Constr Build Mater 341:127828. https://doi.org/10.1016/j.conbuildmat.2022.127828

    Article  CAS  Google Scholar 

  65. Gonzalez J, Sargent P, Ennis C (2021) Sewage treatment sludge biochar activated blast furnace slag as a low carbon binder for soft soil stabilisation. J Clean Prod 311:127553. https://doi.org/10.1016/j.jclepro.2021.127553

    Article  CAS  Google Scholar 

  66. Gurgel GHM (2020) Efeito da incorporação da nanossílica em pastas de cimento com alto teor de fíler calcário (in portuguese). Dissertação (Mestrado) Universidade de Brasília Brazil

  67. Gutiérrez HP, de La Vara RS (2012) Análisis y diseño de experimentos. 3ªedn. McGraw-Hill Educación, México

  68. Hakkinen T (1993) The influence of slag content on the microstructure, permeability and mechanical properties of concrete. Part 1: microstructural studies and basic mechanical properties. Cem Concr Res 23:407–421

    Article  CAS  Google Scholar 

  69. Head KH (2006) Manual of soil laboratory testing. Volume 1: Soil Classification and Compaction Tests. 3th edn. Whittles Publishing Scotland UK

  70. Horpibulsuk S, Phetchuay C, Chinkulkijniwat A (2012) Soil stabilization by carbide residue and fly ash. J Mater Civ Eng 24(2):184–193

    Article  CAS  Google Scholar 

  71. ICSD (Inorganic Crystal Structure Database) (2022). ICSD for http://icsd.fiz-karlsruhe.de. Accessed October 08 2022

  72. Jendrysik K, Jończyk M, Kanty P (2021) Mass stabilization as a modern method of substrate strengthening. Mater Today Proc 38(4):2068–2072. https://doi.org/10.1016/j.matpr.2020.10.143

    Article  Google Scholar 

  73. Jennings HM (2000) A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res 30:101–116. https://doi.org/10.1016/S0008-8846(99)00209-4

    Article  CAS  Google Scholar 

  74. Jung W, Choi S-J (2017) Effect of high-temperature curing methods on the compressive strength development of concrete containing high volumes of ground granulated blast-furnace slag. Adv Mater Sci Eng

  75. Karlsson R, Hansbo S (1989) Soil Classification and Identification. Swedish Council for Building Research Document D8 Stockholm Sweden, p 52

  76. Khanday SA, Hussain M, Das AK (2021) A Review on Chemical Stabilization of Peat. Geotech Geol Eng 39:5429–5443. https://doi.org/10.1007/s10706-021-01857-1

    Article  Google Scholar 

  77. Kinuthia J, Wild S (1998) Soil stabilisation using lime activated GGBS. Sixth CANMET/ACI/JCI–International Conference Fly ash, Silica Fume, Slag and natural Pozzolans in concrete, Vol 2

  78. Kitazume M, Terashi M (2013) The deep mixing method. CRC Press Taylor and Francis group

  79. Klug HP, Alexander LE (1974) X-ray diffraction procedures. 2nd edn. John Wiley and Sons Inc, New York, p 996

  80. Kourti I, Amutha Rani D, Boccaccini AR, Cheeseman CR (2011) Geopolymers from DC plasma–treated air pollution control residues, metakaolin, and granulated blast furnace slag. J Mater Civ Eng 23(6):735–740. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0000170

    Article  CAS  Google Scholar 

  81. Kunal; Siddique R, Rajor A, Singh M (2016) Influence of bacterial-treated cement kiln dust on strength and permeability of concrete. J Mater Civ Eng 28(10): 04016088. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0001593

  82. Lang L, Chen B, Li N (2020) Utilization of lime/carbide slag-activated ground granulated blast-furnace slag for dredged sludge stabilization. Mar Georesour Geotechnol. https://doi.org/10.1080/1064119X.2020.1741050

    Article  Google Scholar 

  83. Lemos SGFP, Almeida MSS, Consoli NC, Nascimento TZ, Polido UF (2020) Field and laboratory investigation of highly organic clay stabilized with Portland cement. J Mater Civ Eng 32(4):04020063. https://doi.org/10.1061/(asce)mt.1943-5533.0003111

    Article  CAS  Google Scholar 

  84. Liu Y, Fu S, Gao J, Yang Y (2020) Prediction for temperature evolution and compressive strength of non-mass concrete with thermal insulation curing in cold weather. J Build Eng 32:101737. https://doi.org/10.1016/j.jobe.2020.101737

    Article  Google Scholar 

  85. Lotero A, Consoli NC, Moncaleano CJ, Tebechrani Neto A, Koester E (2021) Mechanical properties of alkali-activated ground waste glass-carbide lime blends for geotechnical uses. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003918

    Article  Google Scholar 

  86. Lotero A, Consoli NC, Moncaleano CJ (2023) Alkali-activated red ceramic wastes-carbide lime blend: An alternative alkaline cement manufactured at room temperature. J Build Eng 65:105663. https://doi.org/10.1016/j.jobe.2022.105663

    Article  Google Scholar 

  87. Maciel MH (2017) Influência do ligante pré-hidratado nas propriedades de suspensões de cimento Portland (in portuguese). Dissertação (Mestrado) Escola Politécnica da Universidade de São Paulo Brazil

  88. Moayedi H, Nazir R (2018) Malaysian Experiences of Peat Stabilization, State of the Art. Geotech Geol Eng 36:1–11. https://doi.org/10.1007/s10706-017-0321-x

    Article  Google Scholar 

  89. Montgomery DC (2009) Introduction to statistical quality control. 6th edn. John Wiley & Sons Inc

  90. Moreira CC (2006) Características e desempenho da escória de alto forno como agregado para utilização em camadas granulares de pavimento (in portuguese). 37ª Reunião Anual de Pavimentação 11º Encontro Nacional de Conservação Rodoviária 37ª RAPv/11º ENACOR N°103 Goiânia Brazil

  91. Najafi E, Allahverdi A (2009) Effects of curing time and temperature on strength development of inorganic polymeric binder based on natural pozzolan. J Mater Sci 44(12):3088–3097. https://doi.org/10.1007/s10853-009-3411-1

    Article  CAS  ADS  Google Scholar 

  92. Nidzam RM, Kinuthia JM (2010) Sustainable soil stabilisation with blast furnace slag–a review. Proc Inst Civ Eng Constr Mater 163:157–165

    Article  CAS  Google Scholar 

  93. Özbay E, Erfemir M, Durmus HI (2016) Utilization and efficiency of ground granulated blast furnace slag on concrete properties–a review. Constr Build Mater 105:423–434

    Article  Google Scholar 

  94. Park S, Baker JO, Himmel ME, Parrilla PA, Johnson DK (2010) Cellulose crystallinity index: measurement techniques and their impact on interpreting cellulase performance. Biotechnol Biofuels 3(1):10

    Article  PubMed  PubMed Central  Google Scholar 

  95. Puertas F, Martínez-Ramirez S, Alonso S, Vázquez T (2000) Alkali-activated fly ash/slag cement: strength behaviour and hydration products. Cem Concr Res 30:1625–1632

    Article  CAS  Google Scholar 

  96. Puertas F, Palacios M, Manzano H, Dolado JS, Rico A, Rodríguez J (2011) A model of the C–S–A–H gel formed in alkali-activated slag cements. J Eur Ceram Soc 31:2043–2056

    Article  CAS  Google Scholar 

  97. Rispoli C, de Bonis A, Guarino V, Graziano SF, Di Benedetto C, Esposito R, Morra V, Cappelletti P (2019) The ancient pozzolanic mortars of the Thermal complex of Baia (Campi Flegrei, Italy). J Cult Herit. https://doi.org/10.1016/j.culher.2019.05.010

    Article  Google Scholar 

  98. Rispoli C, de Bonis A, Esposito R, Graziano SF, Langella A, Mercurio V, Morra V, Cappelletti P (2020) Unveiling the secrets of Roman craftsmanship: mortars from Piscina Mirabilis (Campi Flegrei, Italy). Archaeol Anthropol Sci. https://doi.org/10.1007/s12520-019-00964-8

    Article  Google Scholar 

  99. Rotaru R, Savin M, Tudorachi N, Peptu C, Samoila P, Sacarescu L, Harabagiu V (2018) Ferromagnetic iron oxide–cellulose nanocomposites prepared by ultrasonication. Polym Chem 9(7):860–868. https://doi.org/10.1039/c7py01587a

    Article  CAS  Google Scholar 

  100. Ruland W (1961) X-ray determination of crystallinity and diffuse disorder scattering. Acta Crystallogr 14:1180–1185. https://doi.org/10.1107/s0365110x61003429

    Article  CAS  Google Scholar 

  101. Saldanha RB, da Rocha CG, Lotero A, Consoli NC (2021) Technical and environmental performance of eggshell lime for soil stabilization. Constr Build Mater 298:123648

    Article  Google Scholar 

  102. Saldanha RB, Scheuermann Filho HC, Mallmann JEC, Consoli NC, Reddy K (2018) Physical-mineralogical-chemical characterization of carbide lime: an environment-friendly chemical additive for soil stabilization. J Mater Civ Eng 30(6):06018004

    Article  Google Scholar 

  103. Santos CP, Bruschi GJ, Mattos JRG, Consoli NC (2021) Stabilization of gold mining tailings with alkali-activated carbide lime and sugarcane bagasse Ash. Transp Geotech. https://doi.org/10.1016/j.trgeo.2021.100704

    Article  Google Scholar 

  104. Sargent P (2015) The development of alkali-activated mixtures for soil stabilisation. In: Handbook of Alkali-Activated Cements Mortars and Concretes, pp 555–604

  105. Sargent P (2021) Greener Ground - using recycled industrial waste in ground engineering. Mater World 29(12):45–47

    MathSciNet  Google Scholar 

  106. Scrivener K, Snellings R, Lothenbach B (2016) A practical guide to microstructural analysis of cementitious materials. CRC Press Taylor & Francis Group LLC

  107. Secco MP, Mesavilla DT, Floss MF, Consoli NC, Miranda T, Cristelo N (2021) Live-scale testing of granular materials stabilized with alkali-activated waste glass and carbide lime. Appl Sci. https://doi.org/10.3390/app112311286

    Article  Google Scholar 

  108. Seo J, Park S, Yoon H, Jang J, Kim S, Lee H (2019) Utilization of calcium carbide residue using granulated blast furnace slag. Materials 12:3511. https://doi.org/10.3390/ma12213511

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  109. Serne R, Westsik Jr J (2011) Data package for secondary waste form down-selection-cast stone. US Department of Energy Pacific Northwest National Laboratory

  110. Sharma K, Kumar A (2020) Utilization of industrial waste—based geopolymers as a soil stabilizer-A review. Innov Infrastruct Solut 5:97. https://doi.org/10.1007/s41062-020-00350-7

    Article  Google Scholar 

  111. Shi C, Day RL (1993) Chemical activation of blended cements made with lime and natural pozzolans. Cem Concr Res 23(6):1389–1396

    Article  CAS  Google Scholar 

  112. Shenbagam VK, Rolands Cepuritis R, Chaunsali P (2021) Influence of exposure conditions on expansion characteristics of lime-rich calcium sulfoaluminate-belite blended cement. Cem Concrete Compos 118:103932. https://doi.org/10.1016/j.cemconcomp.2021.103932

    Article  CAS  Google Scholar 

  113. Song S, Sohn D, Jennings HM, Mason TO (2000) Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci 35:249–257

    Article  CAS  ADS  Google Scholar 

  114. Taylor HFW (1993) Nanostructure of C-S-H: Current status. Adv Cem Based Mater 1:38–46

    Article  CAS  Google Scholar 

  115. Taylor JC, Aldridge LP (1993) Full-profile Rietveld quantitative XRD analysis of Portland cement: Standard XRD profiles for the major phase tricalcium silicate (C3S: 3CaO·SiO2). Powder Diffr 8(3):138–144. https://doi.org/10.1017/s0885715600018054

    Article  CAS  ADS  Google Scholar 

  116. Thomé A (1999) Comportamento de fundações superficiais apoiadas em aterros estabilizados com resíduos industriais (in portuguese). Tese (doutorado)–UFRGS–Programa de Pós-Graduação em Engenharia Civil Brazil

  117. Thygesen A, Oddershede J, Lilholt H, Thomsen AB, Ståhl K (2005) On the determination of crystallinity and cellulose content in plant fibres. Cellulose 12(6):563–576. https://doi.org/10.1007/s10570-005-9001-8)

    Article  CAS  Google Scholar 

  118. Trindade AC, Alcamand HA, Borges PH, Silva FA (2017) On the durability behavior of natural fiber reinforced geopolymers. In: 41st international conference and expo on advanced ceramics composites

  119. Torres-Carrasco M, Puertas F (2017) Alkaline activation of different aluminosilicates as an alternative to Portland cement: Alkali activated cements or geopolymers. Revista Ingeniería de Construcción 32(2):5–12

    Article  CAS  Google Scholar 

  120. Vichan S, Rachan R (2013) Chemical stabilization of soft Bangkok clay using blend of calcium carbide residue and biomass ash. Soils Found 53(2):272–281

    Article  Google Scholar 

  121. Vonk CG (1973) Computerization of Rulands X-ray method for determination of crystallinity in polymers. J Appl Crystallogr 6:148–152

    Article  CAS  ADS  Google Scholar 

  122. Wang DX, Zentar ZR, Abriak NE (2017) Temperature-accelerated strength development in stabilized marine soils as road construction materials. J Mater Civ Eng. https://doi.org/10.1061/%28ASCE%29MT.1943-5533.0001778

    Article  Google Scholar 

  123. Wheeler LN, Take WA, Neil A (2017) Hoult. Performance assessment of peat rail subgrade before and after mass stabilization. Can Geotech J 54(5):674–689. https://doi.org/10.1139/cgj-2016-0256

    Article  Google Scholar 

  124. Yi Y, Gu L, Liu S, Puppala AJ (2015) Carbide slag–activated ground granulated blast furnace slag for soft clay stabilization. Can Geotech J 52(5):656–663. https://doi.org/10.1139/cgj-2014-0007

    Article  CAS  Google Scholar 

  125. Yulianto FE, Basuki W (2019) Modelling of crystal growth in peat soil stabilized with mixing of lime CaCO3 and fly ash. Int J Civ Eng Technol 10(3):49–360

    Google Scholar 

Download references

Acknowledgements

The authors wish to explicit their appreciation to MCT-CNPq (Editais INCT-REAGEO & Produtividade em Pesquisa) and MEC-CAPES (PROEX) for the support to the research group.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andres Lotero.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Núñez, V., Lotero, A., Bastos, C.A. et al. Mechanical and microstructure analysis of mass-stabilized organic clay thermally cured using a ternary binder. Acta Geotech. 19, 741–762 (2024). https://doi.org/10.1007/s11440-023-01961-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01961-x

Keywords

Navigation