Skip to main content
Log in

Evolution of maximum shear modulus and compression index of rigid–soft mixtures under repetitive K0 loading conditions

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The engineering properties of rigid–soft mixtures (i.e., sand-tire chip mixtures) under static loading conditions have been extensively studied; however, the corresponding properties under repetitive loading have not been adequately examined. This study investigates the evolution of the maximum shear modulus (Gmax) and compression index (Cc) of rigid–soft mixtures subjected to static and repetitive loading up to the number of cycles = 104. A floating ring oedometer cell equipped with bender elements and an automatic control system was designed to investigate the impact of the size ratio (SR) and tire chip fraction (TF) on Gmax and Cc during repetitive loading. During the initial static loading, the Gmax of tested mixtures increase with increasing SR or decreasing TF because SR and TF determine the connectivity between rigid sand particles. A huge increase in Gmax of rigid–soft mixtures during the repetitive loadings compared to pure sand and pure tire chip indicates the transition of sand-to-rubber contacts to sand-to-sand contacts caused by the repetitive loadings. The increased rate of coordination number between sand particles caused by repetitive loading is a function of SR and TF, resulting in the highest increase in Gmax caused by repetitive loadings for the mixture with SR = 0.44 at TF = 20%, reflecting an opposite effect of SR on Gmax compared to static loading. In addition, the lower impact of SR on Cc after repetitive loadings was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Anastasiadis A, Senetakis K, Pitilakis K (2012) Small-strain shear modulus and damping ratio of sand-rubber and gravel-rubber mixtures. Geotech Geol Eng 30:363–382. https://doi.org/10.1007/s10706-011-9473-2

    Article  Google Scholar 

  2. Anastasiadis A, Senetakis K, Pitilakis K, Gargala C, Iphigeneia Karakasi T, Edil S, Dean W (2012) Dynamic behavior of sand/rubber mixtures. Part I: effect of rubber content and duration of confinement on small-strain shear modulus and damping ratio. J of ASTM Int 9(2):103680. https://doi.org/10.1520/JAI103680

    Article  CAS  Google Scholar 

  3. Br M, Boominathan A, Banerjee S (2021) Engineering properties of sand–rubber tire shred mixtures. Int J Geotech Eng 15:1061–1077. https://doi.org/10.1080/19386362.2019.1617479

    Article  CAS  Google Scholar 

  4. Brara A, Brara A, Daouadji A et al (2017) Dynamic properties of dense sand-rubber mixtures with small particles size ratio. Eur J Environ Civ Eng 21:1065–1079. https://doi.org/10.1080/19648189.2016.1139509

    Article  Google Scholar 

  5. Chaney R, Demars K, Feng Z-Y, Sutter K (2000) Dynamic properties of granulated rubber/sand mixtures. Geotech Test J 23:338. https://doi.org/10.1520/GTJ11055J

    Article  Google Scholar 

  6. Choo H, Burns SE (2014) Effect of overconsolidation ratio on dynamic properties of binary mixtures of silica particles. Soil Dyn Earthq Eng 60:44–50. https://doi.org/10.1016/j.soildyn.2014.01.015

    Article  Google Scholar 

  7. Choo H, Burns SE (2015) Shear wave velocity of granular mixtures of silica particles as a function of finer fraction, size ratios and void ratios. Granul Matter 17:567–578. https://doi.org/10.1007/s10035-015-0580-2

    Article  CAS  Google Scholar 

  8. Choo H, Hong S-J, Lee W, Lee C (2019) Use of the dilatometer test to estimate the maximum shear modulus of normally consolidated Busan clay. Mar Georesources Geotechnol 37:547–557. https://doi.org/10.1080/1064119X.2018.1458927

    Article  Google Scholar 

  9. Choo H, Lee C (2021) Inverse effect of packing density on shear wave velocity of binary mixed soils with varying size ratios. J Appl Geophys 194:104457. https://doi.org/10.1016/j.jappgeo.2021.104457

    Article  Google Scholar 

  10. Choo H, Lee W, Lee C (2017) Compressibility and small strain stiffness of kaolin clay mixed with varying amounts of sand. KSCE J Civ Eng 21:2152–2161. https://doi.org/10.1007/s12205-016-1787-4

    Article  Google Scholar 

  11. Das S, Bhowmik D (2020) Small-strain dynamic behavior of sand and sand-crumb rubber mixture for different sizes of crumb rubber particle. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003425

    Article  Google Scholar 

  12. Ding Y, Zhang J, Chen X et al (2021) Experimental investigation on static and dynamic characteristics of granulated rubber-sand mixtures as a new railway subgrade filler. Constr Build Mater 273:121955. https://doi.org/10.1016/j.conbuildmat.2020.121955

    Article  Google Scholar 

  13. Ehsani M, Shariatmadari N, Mirhosseini SM (2015) Shear modulus and damping ratio of sand-granulated rubber mixtures. J Cent South Univ 22:3159–3167. https://doi.org/10.1007/s11771-015-2853-7

    Article  CAS  Google Scholar 

  14. Eshghinezhad H, Shariatmadari N, Askari Lasaki B (2021) Influence of adding tire chips on the mechanical behavior of calcareous sands. Geotech Geol Eng 39:2147–2160. https://doi.org/10.1007/s10706-020-01615-9

    Article  Google Scholar 

  15. Evans TM, Valdes JR (2011) The microstructure of particulate mixtures in one-dimensional compression: numerical studies. Granul Matter 13:657–669. https://doi.org/10.1007/s10035-011-0278-z

    Article  CAS  Google Scholar 

  16. Foose GJ, Benson CH, Bosscher PJ (1996) Sand reinforced with shredded waste tires. J Geotech Eng 122:760–767. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:9(760)

    Article  Google Scholar 

  17. Fu R, Coop MR, Li XQ (2017) Influence of particle type on the mechanics of sand-rubber mixtures. J Geotech Geoenvironmental Eng. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001680

    Article  Google Scholar 

  18. Ghazavi M, Kavandi M (2022) Shear modulus and damping characteristics of uniform and layered sand-rubber grain mixtures. Soil Dyn Earthq Eng 162:107412. https://doi.org/10.1016/j.soildyn.2022.107412

    Article  Google Scholar 

  19. Goudarzy M, Rahemi N, Rahman MM, Schanz T (2017) Predicting the maximum shear modulus of sands containing nonplastic fines. J Geotech Geoenvironmental Eng 143:06017013. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001760

    Article  Google Scholar 

  20. Guo S, Dai Q, Si R et al (2017) Evaluation of properties and performance of rubber-modified concrete for recycling of waste scrap tire. J Clean Prod 148:681–689. https://doi.org/10.1016/j.jclepro.2017.02.046

    Article  CAS  Google Scholar 

  21. Hataf N, Rahimi MM (2006) Experimental investigation of bearing capacity of sand reinforced with randomly distributed tire shreds. Constr Build Mater 20:910–916. https://doi.org/10.1016/j.conbuildmat.2005.06.019

    Article  Google Scholar 

  22. JGS JGS (2008) JGS 0161–2008 Test method of minimum and maximum densities of sands. Japanese Geotech Soc

  23. Kim H-K, Santamarina JC (2008) Sand–rubber mixtures (large rubber chips). Can Geotech J 45:1457–1466. https://doi.org/10.1139/T08-070

    Article  Google Scholar 

  24. Kim SY, Park J, Lee J-S (2021) Coarse-fine mixtures subjected to repetitive Ko loading: effects of fines fraction, particle shape, and size ratio. Powder Technol 377:575–584. https://doi.org/10.1016/j.powtec.2020.09.017

    Article  CAS  Google Scholar 

  25. Ku T, Mayne PW, Gutierrez BJ (2011) Hierarchy of V s modes and stress-dependency in geomaterials. In: Deformation Characteristics of Geomaterials. IOS Press, pp 533–540

  26. Lade PV, Yamamuro JA (1997) Effects of nonplastic fines on static liquefaction of sands. Can Geotech J 34:918–928. https://doi.org/10.1139/t97-052

    Article  Google Scholar 

  27. Lee C, Shin H, Lee J-S (2014) Behavior of sand-rubber particle mixtures: experimental observations and numerical simulations. Int J Numer Anal Methods Geomech 38:1651–1663. https://doi.org/10.1002/nag.2264

    Article  CAS  Google Scholar 

  28. Lee C, Truong QH, Lee W, Lee J-S (2010) Characteristics of rubber-sand particle mixtures according to size ratio. J Mater Civ Eng 22:323–331. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000027

    Article  CAS  Google Scholar 

  29. Lee J-S, Dodds J, Santa C, marina JC (2007) Behavior of rigid-soft particle mixtures. J Mater Civ Eng 19:179–184. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:2(179)

    Article  CAS  Google Scholar 

  30. Lee J-S, Santamarina JC (2005) Bender elements: performance and signal interpretation. J Geotech Geoenvironmental Eng 131:1063–1070. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:9(1063)

    Article  Google Scholar 

  31. Li J, Cui J, Shan Y et al (2020) Dynamic shear modulus and damping ratio of sand-rubber mixtures under large strain range. Materials (Basel) 13:4017. https://doi.org/10.3390/ma13184017

    Article  ADS  CAS  PubMed  Google Scholar 

  32. Li W, Kwok CY, Sandeep CS, Senetakis K (2019) Sand type effect on the behaviour of sand-granulated rubber mixtures: Integrated study from micro- to macro-scales. Powder Technol 342:907–916. https://doi.org/10.1016/j.powtec.2018.10.025

    Article  CAS  Google Scholar 

  33. Liu L, Cai G, Liu S (2018) Compression properties and micro-mechanisms of rubber-sand particle mixtures considering grain breakage. Constr Build Mater 187:1061–1072. https://doi.org/10.1016/j.conbuildmat.2018.08.051[

    Article  Google Scholar 

  34. Liu L, Cai G, Zhang J et al (2020) Evaluation of engineering properties and environmental effect of recycled waste tire-sand/soil in geotechnical engineering: A compressive review. Renew Sustain Energy Rev 126:109831. https://doi.org/10.1016/j.rser.2020.109831

    Article  Google Scholar 

  35. Lopera Perez JC, Kwok CY, Senetakis K (2016) Effect of rubber size on the behaviour of sand-rubber mixtures: a numerical investigation. Comput Geotech 80:199–214. https://doi.org/10.1016/j.compgeo.2016.07.005

    Article  Google Scholar 

  36. Mark JE (1981) Rubber elasticity. J Chem Educ 58:898. https://doi.org/10.1021/ed058p898

    Article  CAS  Google Scholar 

  37. Mitchell JK, Soga K (2005) Fundamentals of soil behavior, 3rd edn. John Wiley and Sons Inc, Hoboken, NJ

    Google Scholar 

  38. Moustafa A, ElGawady MA (2015) Mechanical properties of high strength concrete with scrap tire rubber. Constr Build Mater 93:249–256. https://doi.org/10.1016/j.conbuildmat.2015.05.115

    Article  Google Scholar 

  39. Nakhaei A, Marandi SM, Sani Kermani S, Bagheripour MH (2012) Dynamic properties of granular soils mixed with granulated rubber. Soil Dyn Earthq Eng 43:124–132. https://doi.org/10.1016/j.soildyn.2012.07.026

    Article  Google Scholar 

  40. Neaz Sheikh M, Mashiri MS, Vinod JS, Tsang H-H (2013) Shear and compressibility behavior of sand-tire crumb mixtures. J Mater Civ Eng 25:1366–1374. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000696

    Article  Google Scholar 

  41. Park D, Kishida T (2019) Shear modulus reduction and damping ratio curves for earth core materials of dams. Can Geotech J 56:14–22. https://doi.org/10.1139/cgj-2017-0529

    Article  Google Scholar 

  42. Park J (2017) Long-term response of soils subjected to repetitive mechanical loads: Engineering implications

  43. Park J, Santamarina JC (2019) Sand response to a large number of loading cycles under zero-lateral-strain conditions: evolution of void ratio and small-strain stiffness. Géotechnique 69:501–513. https://doi.org/10.1680/jgeot.17.p.124

    Article  Google Scholar 

  44. Pasten C, Shin H, Santamarina JC (2014) Long-term foundation response to repetitive loading. J Geotech Geoenvironmental Eng 140:04013036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001052

    Article  Google Scholar 

  45. Pistolas GA, Anastasiadis A, Pitilakis K (2017) Dynamic behaviour of granular soil materials mixed with granulated rubber: effect of rubber content and granularity on the small-strain shear modulus and damping ratio. Geotech Geol Eng. https://doi.org/10.1007/s10706-017-0391-9

    Article  Google Scholar 

  46. Rao GV, Dutta RK (2006) Compressibility and strength behaviour of sand–tyre chip mixtures. Geotech Geol Eng 24:711–724. https://doi.org/10.1007/s10706-004-4006-x

    Article  Google Scholar 

  47. Rios S, Kowalska M, Viana da Fonseca A (2021) Cyclic and dynamic behavior of sand-rubber and clay-rubber mixtures. Geotech Geol Eng 39:3449–3467. https://doi.org/10.1007/s10706-021-01704-3

    Article  Google Scholar 

  48. Rollins KM, Singh M, Roy J (2020) Simplified equations for shear-modulus degradation and damping of gravels. J Geotech Geoenvironmental Eng 146:04020076. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002300

    Article  Google Scholar 

  49. Ryu B, Choo H, Park J, Burns SE (2022) Stress–deformation response of rigid–soft particulate mixtures under repetitive Ko loading conditions. Transp Geotech 37:100835. https://doi.org/10.1016/j.trgeo.2022.100835

    Article  Google Scholar 

  50. Santamarina JC, Cascante G (1996) Stress anisotropy and wave propagation: a micromechanical view. Can Geotech J 33:770–782. https://doi.org/10.1139/t96-102-323

    Article  Google Scholar 

  51. Santamarina JC, Klein KA, Fam MA (2001) Soils and waves: particulate materials behavior, characterization and process monitoring. Wiley, England, New Jersey, p 130

    Google Scholar 

  52. Sarajpoor S, Kavand A, Zogh P, Ghalandarzadeh A (2020) Dynamic behavior of sand-rubber mixtures based on hollow cylinder tests. Constr Build Mater 251:118948. https://doi.org/10.1016/j.conbuildmat.2020.118948

    Article  Google Scholar 

  53. Senetakis K, Anastasiadis A (2015) Effects of state of test sample, specimen geometry and sample preparation on dynamic properties of rubber–sand mixtures. Geosynth Int 22:301–310. https://doi.org/10.1680/gein.15.00013

    Article  Google Scholar 

  54. Senetakis K, Anastasiadis A, Pitilakis K (2012) Dynamic properties of dry sand/rubber (SRM) and gravel/rubber (GRM) mixtures in a wide range of shearing strain amplitudes. Soil Dyn Earthq Eng 33:38–53. https://doi.org/10.1016/j.soildyn.2011.10.003

    Article  Google Scholar 

  55. Subramaniam P, Banerjee S, Ku T (2019) Shear modulus and damping ratio model for cement treated clay. Int J Geomech 19:06019010. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001448

    Article  Google Scholar 

  56. Tafreshi SNM, Mehrjardi GT, Dawson AR (2012) buried pipes in rubber-soil backfilled trenches under cyclic loading. J Geotech Geoenvironmental Eng 138:1346–1356. https://doi.org/10.1061/(ASCE)GT.1943-5606.0000710

    Article  Google Scholar 

  57. Thomas BS, Chandra Gupta R (2016) Properties of high strength concrete containing scrap tire rubber. J Clean Prod 113:86–92. https://doi.org/10.1016/j.jclepro.2015.11.019

    Article  Google Scholar 

  58. Tian Y, Senetakis K (2022) Influence of creep on the small-strain stiffness of sand–rubber mixtures. Géotechnique 72:899–910. https://doi.org/10.1680/jgeot.20.P.208

    Article  Google Scholar 

  59. Valdes JR, Evans TM (2008) Sand–rubber mixtures: experiments and numerical simulations. Can Geotech J 45:588–595. https://doi.org/10.1139/T08-002

    Article  CAS  Google Scholar 

  60. Walter JD (1981) Cord reinforced rubber, Mechanics. U.S. Department of Transportation

  61. Wu WY, Benda CC, Cauley RF (1997) Triaxial determination of shear strength of tire chips. J Geotech Geoenvironmental Eng 123:479–482. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:5(479)

    Article  CAS  Google Scholar 

  62. Xiao Y, Nan B, McCartney JS (2019) Thermal conductivity of sand-tire shred mixtures. J Geotech Geoenviron Eng 145:06019012. https://doi.org/10.1061/(ASCE)GT.1943-5606.0002155

    Article  CAS  Google Scholar 

  63. Zhang H, Yuan X, Liu Y et al (2020) Experimental study on the pullout behavior of scrap tire strips and their application as soil reinforcement. Constr Build Mater. 254:119288. https://doi.org/10.1016/j.conbuildmat.2020.119288

    Article  Google Scholar 

  64. Zhu J, Cao JN, Bate B, Khayat KH (2018) Determination of mortar setting times using shear wave velocity evolution curves measured by the bender element technique. Cem Concr Res 106:1–11. https://doi.org/10.1016/j.cemconres.2018.01.013

    Article  CAS  Google Scholar 

  65. Zhuo B, Zhu M, Fang Y et al (2021) Numerical and experimental analyses for rubber-sand particle mixtures applied in high-filled cut-and-cover tunnels. Constr Build Mater 306:124874. https://doi.org/10.1016/j.conbuildmat.2021.124874

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean government (NRF-2019R1C1C1005310).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunwook Choo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Won, J., Ryu, B. & Choo, H. Evolution of maximum shear modulus and compression index of rigid–soft mixtures under repetitive K0 loading conditions. Acta Geotech. 19, 1047–1062 (2024). https://doi.org/10.1007/s11440-023-01945-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-023-01945-x

Keywords

Navigation