Skip to main content

Development of a non-local partial Peridynamic explicit mesh-free incompressible method and its validation for simulating dry dense granular flows

Abstract

In this study, a non-local partial Peridynamic mesh-free incompressible method is proposed for simulating dry dense granular flows such as granular column collapse. In the method, a predictor-and-corrector time splitting scheme is used, and Peridynamic theory is incorporated only in the predictor to solve an integrated momentum equation, in which part of the pressure gradient force, viscous force and external force are included. An incompressible explicit solver is employed to obtain the pressure field, and the corrector allows for the remaining part of the pressure gradient force to be calculated and updates the flow field. The proposed method is then validated by simulating granular flows in several configurations, including a steady granular flow down an inclined slope, granular column collapses at both one side and two sides, and collision of two adjacent granular columns. The simulated velocity profiles are in good agreement with the analytical solution in the steady granular down an inclined slope in which sensitivity of the particle distance, a coefficient by incorporating Peridynamics, and Peridynamic horizon are examined. The simulation of the granular column collapses shows that the method can reproduce the final deposit, free surface, and velocity in the flows. The method can capture interface variations between two granular columns during their collision in good agreement with experimental observations.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Data availability

The data generated in the present study are available from the corresponding authors on reasonable request.

References

  1. Balmforth NJ, Kerswell RR (2005) Granular collapse in two dimensions. J Fluid Mech 538:399

    Article  MathSciNet  MATH  Google Scholar 

  2. Bessa MA, Foster JT, Belytschko T, Liu WK (2014) A meshfree unification: reproducing kernel peridynamics. Comput Mech 53(6):1251–1264

    Article  MathSciNet  MATH  Google Scholar 

  3. Bouzid M, Izzet A, Trulsson M, Clément E, Claudin P, Andreotti B (2015) Non-local rheology in dense granular flows. Eur Phys J E 38(11):1–15

    Article  Google Scholar 

  4. Bui HH, Nguyen GD (2017) A coupled fluid-solid SPH approach to modelling flow through deformable porous media. Int J Solids Struct 125:244–264

    Article  Google Scholar 

  5. Bui HH, Nguyen GD (2021) Smoothed particle hydrodynamics (SPH) and its applications in geomechanics: from solid fracture to granular behaviour and multiphase flows in porous media. Comput Geotech 138:104315

    Article  Google Scholar 

  6. Chambon G, Bouvarel R, Laigle D, Naaim M (2011) Numerical simulations of granular free-surface flows using smoothed particle hydrodynamics. J Nonnewton Fluid Mech 166(12–13):698–712

    Article  MATH  Google Scholar 

  7. Chauchat J, Médale M (2014) A three-dimensional numerical model for dense granular flows based on the μ (I) rheology. J Comput Phys 256:696–712

    Article  MathSciNet  MATH  Google Scholar 

  8. Coquand O, Sperl M, Kranz WT (2020) Integration through transients approach to the μ (I) rheology. Phys Rev E 102(3):032602

    Article  Google Scholar 

  9. Courant R, Friedrichs K, Lewy H (1967) On the partial difference equations of mathematical physics. IBM J Res Dev 11(2):215–234

    Article  MathSciNet  MATH  Google Scholar 

  10. Daly E, Grimaldi S, Bui HH (2016) Explicit incompressible SPH algorithm for free-surface flow modelling: a comparison with weakly compressible schemes. Adv Water Resour 97:156–167

    Article  Google Scholar 

  11. Dsouza PV, Nott PR (2020) A non-local constitutive model for slow granular flow that incorporates dilatancy. J Fluid Mech. https://doi.org/10.1017/jfm.2020.62

    Article  MathSciNet  Google Scholar 

  12. Dunatunga S, Kamrin K (2015) Continuum modelling and simulation of granular flows through their many phases. J Fluid Mech 779:483–513

    Article  MathSciNet  MATH  Google Scholar 

  13. Fan H, Li S (2017) A Peridynamics-SPH modeling and simulation of blast fragmentation of soil under buried explosive loads. Comput Methods Appl Mech Eng 318:349–381

    Article  MathSciNet  MATH  Google Scholar 

  14. Feng R, Fourtakas G, Rogers BD, Lombardi D (2021) Large deformation analysis of granular materials with stabilized and noise-free stress treatment in smoothed particle hydrodynamics (SPH). Comput Geotech 138:104356

    Article  Google Scholar 

  15. Galindo-Torres SA (2013) A coupled Discrete Element Lattice Boltzmann Method for the simulation of fluid–solid interaction with particles of general shapes. Comput Methods Appl Mech Eng 265:107–119

    Article  MathSciNet  MATH  Google Scholar 

  16. Gao W, Matsunaga T, Duan G, Koshizuka S (2021) A coupled 3D isogeometric/least-square MPS approach for modeling fluid–structure interactions. Comput Methods Appl Mech Eng 373:113538

    Article  MathSciNet  MATH  Google Scholar 

  17. Gesenhues L, Behr M (2021) Simulating dense granular flow using the μ (I)-rheology within a space-time framework. Int J Numer Methods Fluids 93:2889

    Article  MathSciNet  Google Scholar 

  18. Ha YD, Bobaru F (2010) Studies of dynamic crack propagation and crack branching with peridynamics. Int J Fract 162(1):229–244

    Article  MATH  Google Scholar 

  19. Harada E, Gotoh H, Ikari H, Khayyer A (2019) Numerical simulation for sediment transport using MPS-DEM coupling model. Adv Water Resour 129:354–364

    Article  Google Scholar 

  20. He X, Liang D, Bolton MD (2018) Run-out of cut-slope landslides: mesh-free simulations. Géotechnique 68(1):50–63

    Article  Google Scholar 

  21. Henann DL, Kamrin K (2013) A predictive, size-dependent continuum model for dense granular flows. Proc Natl Acad Sci 110(17):6730–6735

    Article  MathSciNet  MATH  Google Scholar 

  22. Ikari H, Gotoh H (2016) SPH-based simulation of granular collapse on an inclined bed. Mech Res Commun 73:12–18

    Article  Google Scholar 

  23. Islam MRI, Zhang W, Peng C (2022) Large deformation analysis of geomaterials using stabilized total Lagrangian smoothed particle hydrodynamics. Eng Anal Boundary Elem 136:252–265

    Article  MathSciNet  MATH  Google Scholar 

  24. Jafarzadeh S, Chen Z, Li S, Bobaru F (2019) A peridynamic mechano-chemical damage model for stress-assisted corrosion. Electrochim Acta 323:134795

    Article  Google Scholar 

  25. Jandaghian M, Krimi A, Zarrati AR, Shakibaeinia A (2021) Enhanced weakly-compressible MPS method for violent free-surface flows: Role of particle regularization techniques. J Comput Phys 434:110202

    Article  MathSciNet  MATH  Google Scholar 

  26. Javili A, McBride AT, Mergheim J, Steinmann P (2021) Towards elasto-plastic continuum-kinematics-inspired peridynamics. Comput Methods Appl Mech Eng 380:113809

    Article  MathSciNet  MATH  Google Scholar 

  27. Jop P, Forterre Y, Pouliquen O (2006) A constitutive law for dense granular flows. Nature 441(7094):727–730

    Article  Google Scholar 

  28. Kamrin K (2019) Non-locality in granular flow: phenomenology and modeling approaches. Front Phys 7:116

    Article  Google Scholar 

  29. Katiyar A, Foster JT, Ouchi H, Sharma MM (2014) A peridynamic formulation of pressure driven convective fluid transport in porous media. J Comput Phys 261:209–229

    Article  MathSciNet  MATH  Google Scholar 

  30. Khayyer A, Gotoh H (2010) A higher order Laplacian model for enhancement and stabilization of pressure calculation by the MPS method. Appl Ocean Res 32(1):124–131

    Article  Google Scholar 

  31. Khayyer A, Gotoh H (2011) Enhancement of stability and accuracy of the moving particle semi-implicit method. J Comput Phys 230(8):3093–3118

    Article  MathSciNet  MATH  Google Scholar 

  32. Koshizuka S (1995) A particle method for incompressible viscous flow with fluid fragmentation. Comput Fluid Dyn J 4:29

    Google Scholar 

  33. Koshizuka S, Nobe A, Oka Y (1998) Numerical analysis of breaking waves using the moving particle semi-implicit method. Int J Numer Meth Fluids 26(7):751–769

    Article  MATH  Google Scholar 

  34. Lagrée PY, Staron L, Popinet S (2011) The granular column collapse as a continuum: validity of a two-dimensional Navier-Stokes model with a μ(I)-rheology. J Fluid Mech 686:378–408

    Article  MathSciNet  MATH  Google Scholar 

  35. Lakshmanan A, Luo J, Javaheri I, Sundararaghavan V (2021) Three-dimensional crystal plasticity simulations using peridynamics theory and experimental comparison. Int J Plast 142:102991

    Article  Google Scholar 

  36. Lee BH, Park JC, Kim MH, Hwang SC (2011) Step-by-step improvement of MPS method in simulating violent free-surface motions and impact-loads. Comput Methods Appl Mech Eng 200(9–12):1113–1125

    Article  MATH  Google Scholar 

  37. Lin CC, Yang FL (2020) Continuum simulation for regularized non-local μ (I) model of dense granular flows. J Comput Phys 420:109708

    Article  MathSciNet  MATH  Google Scholar 

  38. Lipton R, Said E, Jha P (2018) Free damage propagation with memory. J Elast 133(2):129–153

    Article  MathSciNet  MATH  Google Scholar 

  39. Liu D, Henann DL (2017) Non-local continuum modelling of steady, dense granular heap flows. J Fluid Mech 831:212–227

    Article  MathSciNet  MATH  Google Scholar 

  40. Liu R, Yan J, Li S (2020) Modeling and simulation of ice–water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics. Computational Particle Mechanics 7(2):241–255

    Article  Google Scholar 

  41. Matsunaga T, Koshizuka S (2022) Stabilized LSMPS method for complex free-surface flow simulation. Comput Methods Appl Mech Eng 389:114416

    Article  MathSciNet  MATH  Google Scholar 

  42. GDR MiDi gdrmidi@ polytech. univ-mrs. fr http://www.lmgc.univ-montp2.fr/MIDI/. (2004). On dense granular flows. The European Physical Journal E, 14, 341-365.

  43. Minatti L, Paris E (2015) A SPH model for the simulation of free surface granular flows in a dense regime. Appl Math Model 39(1):363–382

    Article  MathSciNet  MATH  Google Scholar 

  44. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    Article  MATH  Google Scholar 

  45. Monaghan JJ (2005) Smoothed particle hydrodynamics. Rep Prog Phys 68(8):1703

    Article  MathSciNet  MATH  Google Scholar 

  46. Mowlavi S, Kamrin K (2021) Interplay between hysteresis and nonlocality during onset and arrest of flow in granular materials. Soft Matter 17(31):7359–7375

    Article  Google Scholar 

  47. Oger G, Marrone S, Le Touzé D, De Leffe M (2016) SPH accuracy improvement through the combination of a quasi-Lagrangian shifting transport velocity and consistent ALE formalisms. J Comput Phys 313:76–98

    Article  MathSciNet  MATH  Google Scholar 

  48. Ouchi H, Katiyar A, York J, Foster JT, Sharma MM (2015) A fully coupled porous flow and geomechanics model for fluid driven cracks: a peridynamics approach. Comput Mech 55(3):561–576

    Article  MathSciNet  MATH  Google Scholar 

  49. Peng C, Wu W, Yu HS, Wang C (2015) A SPH approach for large deformation analysis with hypoplastic constitutive model. Acta Geotech 10(6):703–717

    Article  Google Scholar 

  50. Pouliquen O, Forterre Y (2009) A non-local rheology for dense granular flows. Philos Trans Royal Soc A: Math, Phys Eng Sci 367(1909):5091–5107

    Article  MATH  Google Scholar 

  51. Ren H, Zhuang X, Cai Y, Rabczuk T (2016) Dual-horizon peridynamics. Int J Numer Meth Eng 108(12):1451–1476

    Article  MathSciNet  Google Scholar 

  52. Ren H, Zhuang X, Rabczuk T (2017) Dual-horizon peridynamics: a stable solution to varying horizons. Comput Methods Appl Mech Eng 318:762–782

    Article  MathSciNet  MATH  Google Scholar 

  53. Schaeffer DG, Barker T, Tsuji D, Gremaud P, Shearer M, Gray JMNT (2019) Constitutive relations for compressible granular flow in the inertial regime. J Fluid Mech 874:926–951

    Article  MathSciNet  MATH  Google Scholar 

  54. Shakibaeinia A, Jin YC (2010) A weakly compressible MPS method for modeling of open-boundary free-surface flow. Int J Numer Meth Fluids 63(10):1208–1232

    MathSciNet  MATH  Google Scholar 

  55. Shakibaeinia A, Jin YC (2012) MPS mesh-free particle method for multiphase flows. Comput Methods Appl Mech Eng 229:13–26

    Article  MathSciNet  MATH  Google Scholar 

  56. Shimizu Y, Gotoh H, Khayyer A (2018) An MPS-based particle method for simulation of multiphase flows characterized by high density ratios by incorporation of space potential particle concept. Comput Math Appl 76(5):1108–1129

    Article  MathSciNet  MATH  Google Scholar 

  57. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    Article  MathSciNet  MATH  Google Scholar 

  58. Silling SA, Epton M, Weckner O, Xu J, Askari E (2007) Peridynamic states and constitutive modeling. J Elast 88(2):151–184

    Article  MathSciNet  MATH  Google Scholar 

  59. Tsuruta N, Khayyer A, Gotoh H (2013) A short note on dynamic stabilization of moving particle semi-implicit method. Comput Fluids 82:158–164

    Article  MathSciNet  MATH  Google Scholar 

  60. Violeau D, Rogers BD (2016) Smoothed particle hydrodynamics (SPH) for free-surface flows: past, present and future. J Hydraul Res 54(1):1–26

    Article  Google Scholar 

  61. Wang PP, Meng ZF, Zhang AM, Ming FR, Sun PN (2019) Improved particle shifting technology and optimized free-surface detection method for free-surface flows in smoothed particle hydrodynamics. Comput Methods Appl Mech Eng 357:112580

    Article  MathSciNet  MATH  Google Scholar 

  62. Wu P, Zhao J, Chen Z, Bobaru F (2020) Validation of a stochastically homogenized peridynamic model for quasi-static fracture in concrete. Eng Fract Mech 237:107293

    Article  Google Scholar 

  63. Xu T (2021) Explicit calculation for the pressure Poisson equation to simulate incompressible fluid flows in a mesh-free method. Int J Numer Meth Fluids 93(10):3034–3052

    Article  MathSciNet  Google Scholar 

  64. Xu T, Jin YC (2016) Modeling free-surface flows of granular column collapses using a mesh-free method. Powder Technol 291:20–34

    Article  Google Scholar 

  65. Xu T, Jin YC (2016) Improvements for accuracy and stability in a weakly-compressible particle method. Comput Fluids 137:1–14

    Article  MathSciNet  MATH  Google Scholar 

  66. Xu T, Jin YC (2021) Two-dimensional continuum modelling granular column collapse by non-local peridynamics in a mesh-free method with rheology. J Fluid Mech. https://doi.org/10.1017/jfm.2021.320

    Article  MathSciNet  MATH  Google Scholar 

  67. Xu T, Jin YC, Tai YC (2019) Granular surface waves interaction across phases modeled by mesh-free method. Powder Technol 355:226–241

    Article  Google Scholar 

  68. Xu T, Jin YC, Tai YC, Lu CH (2017) Simulation of velocity and shear stress distributions in granular column collapses by a mesh-free method. J Nonnewton Fluid Mech 247:146–164

    Article  MathSciNet  Google Scholar 

  69. Ye Y, Xu T, Zhu DZ (2020) Numerical analysis of dam-break waves propagating over dry and wet beds by the mesh-free method. Ocean Eng 217:107969

    Article  Google Scholar 

  70. Zhang T, Koshizuka S, Murotani K, Shibata K, Ishii E (2017) Improvement of pressure distribution to arbitrary geometry with boundary condition represented by polygons in particle method. Int J Numer Meth Eng 112(7):685–710

    Article  MathSciNet  Google Scholar 

  71. Zhang P, Sun S, Chen Y, Galindo-Torres SA, Cui W (2021) Coupled material point Lattice Boltzmann method for modeling fluid–structure interactions with large deformations. Comput Methods Appl Mech Eng 385:114040

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tibing Xu.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix

Flow chart of the numerical algorithm

To clearly illustrate the numerical method for simulating granular flows, a flow chart of the algorithm is shown in Fig. 

Fig. 16
figure 16

Flow chart of the proposed numerical algorithm

16. The numerical algorithm is based on the predictor-and-corrector time splitting scheme. The predictor solves shear stress term, external gravity force term, and part of the pressure gradient term by using a coefficient ε. With the continuity equation, the pressure Poisson equation is obtained, which is solved by an explicit equation. After obtaining the pressure field, the remaining pressure gradient is solved in the correction and the particles are updated to new locations. To avoid the clustering of particles, a collision model is implemented. Then, the calculation proceeds to the next loop.

Collision distance sensitivity investigation

The collision distance in the collision model is examined by varying the α value to simulate the granular column collapse. A schematic diagram for the numerical setup is shown in Fig. 5b in Sect. 4.2. Collision occurs when the distance of two particles is less than a threshold and the α value in the collision model is varied as α = 0.95, 0.9, and 0.8. In the investigation, ε = 0.75 and the particle distance d = 0.0025 m. The free surface profiles in the granular flow by using different α values is shown in Fig. 

Fig. 17
figure 17

Free surface by using different collison distances in the collision model in the mesh-free method, compared to the experimental measurements

17. By using larger values of α in the collision model, the top part of the flow is higher, which can be observed for α = 0.9 and 0.8 at t = 0.22 s and 0.42 s. Meanwhile, the wave front part is shorter by using the two α values. By using α = 0.95, the free surface is closer to the experimental measurements.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Xu, T., Li, S.S. Development of a non-local partial Peridynamic explicit mesh-free incompressible method and its validation for simulating dry dense granular flows. Acta Geotech. (2022). https://doi.org/10.1007/s11440-022-01766-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-022-01766-4

Keywords

  • Explicit scheme
  • Granular flows
  • Mesh-free method
  • Peridynamics
  • Pressure Poisson equation