Skip to main content

Advertisement

Log in

Characterization of hydraulic fracture configuration based on complex in situ stress field of a tight oil reservoir in Junggar Basin, Northwest China

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The Jurassic Badaowan formation of the tight oil reservoir in northwest Xinjiang, China, is featured by a complex in situ stress pattern, leading to an unclear understanding of the orientation and geometry of a propagated hydraulic fracture. In this regard, a three-dimensional (3-D) in situ stress field was first configured based on a detailed mechanical earth model of the region of concern. Secondly, a fluid-solid-damage coupling model was established to explore the influences of the in situ stresses and the engineering parameters on fracture propagation. Finally, a systematic approach was proposed to characterize the updated stress field and the fracture morphology reconfigured by the in situ stress. The findings disclose that the reservoir is mainly controlled by reverse faults that generate horizontal fractures in most parts of the region. The in situ stress follows the strike-slip fault pattern where vertical fractures are dominant in the central and southeastern part of the reservoir, where the vertical fracture tends to be constrained in the oil layer when the interlayer minimum stress difference ∆Sh becomes greater than 4 MPa in the southeast. In addition, as the injection rate increases, the width of a fracture increases, whereas its height decreases. The viscosity has negligible effect on the fracture height, but its increase can enlarge the fracture width and decrease the length. Here, the cross-dipole shear wave logging record in a field well was used to verify the proposed method, showing that the predicted fracture morphology was consistent with the field test result. The research can aid field engineers in predicting fracture morphology for optimizing a fracturing scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig.3
Fig.4
Fig.5
Fig.6
Fig.7
Fig.8
Fig. 9
Fig.10
Fig. 11
Fig.12
Fig.13
Fig.14
Fig.15
Fig.16
Fig.17
Fig.18

Similar content being viewed by others

References

  1. Hubbert MK, Willis DG (1957) Mechanics of hydraulic fracturing. Petr Trans AIME. https://doi.org/10.2118/686-G

    Article  Google Scholar 

  2. Abass HH, Hedayati S, Meadows DL (1992) Nonplanar fracture propagation from a horizontal wellbore: experimental study. SPE Ann Tech Conf Exh. https://doi.org/10.2118/24823-PA

    Article  Google Scholar 

  3. Zoback MD (2007) Reservoir geomechanics. Cambridge University Press, UK

    Book  MATH  Google Scholar 

  4. Zhang L, Cao P, Radha K (2010) Evaluation of rock strength criteria for wellbore stability analysis. Int J Rock Mech Min Sci 47(8):1304–1316. https://doi.org/10.1016/j.ijrmms.2010.09.001

    Article  Google Scholar 

  5. Mavko G, Mukerji T, Dvorkin J (1998) The rock physics handbook, 1 sted. Cambridge University Press, Cambridge

    Google Scholar 

  6. King MS (1983) Static and dynamic elastic properties of rocks form the Canadian shield. Int J Rock Mech Min Sci Geomech. 20(5):237–241. https://doi.org/10.1016/0148-9062(83)90004-9

    Article  Google Scholar 

  7. Brautigam T, Knochel A, Lehne M (1998) Prognosis of uniaxial compressive strength and stiffness of rocks based on point load and ultrasonic tests. Otto-Graf-J 9:61–79

    Google Scholar 

  8. Al-Tahini A (2003) The effect of cementation on the mechanical properties for jauf reservoir at Saudi Arabia. University of Oklahoma, Norman

    Google Scholar 

  9. Eissa EA, Kazi A (1988) Relation between static and dynamic Young’s moduli of rocks. Int J Rock Mech Mining Sci 25(6):479–482

    Article  Google Scholar 

  10. Wang HF (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton NJ. Princeton University Press, New Jerssy, p 304

    Google Scholar 

  11. Eaton BA (1969) Fracture gradient prediction and its application in oilfield operations. J Pet Technol 246:1353–1360. https://doi.org/10.2118/2163-PA

    Article  Google Scholar 

  12. Thiercelin M, Plumb R (1994) A core-based prediction of lithologic stress contrasts in east texas formations. SPE Form Eval 9(04):251–258. https://doi.org/10.2118/21847-PA

    Article  Google Scholar 

  13. Bratton T, Bornemann T, Li Q, Plumb R, Rasmus J, Krabbe H (1999) Logging-whiledrilling images for geomechanical, geological and petrophysical interpretations. In: The 40th Annual Logging Symposium, SPWLA, Oslo, Norway. May 30– June 3. SPWLA-1999-JJJ

  14. Chen M, Jin Y, Zhang GQ (2008) Rock mechanics in petroleum engineering. Science Press, Beijing

    Google Scholar 

  15. Zhang YS, Zhang JC, Yuan B et al (2018) In-situ stresses controlling hydraulic fracture propagation and fracture breakdown pressure. J Pet Sci Eng 164:164–173. https://doi.org/10.1016/j.petrol.2018.01.050

    Article  Google Scholar 

  16. Warpinski NR, Teufel LW (1989) In-situ stresses in low permeability, nonmarine rocks. J Pet Technol 41(4):405–414. https://doi.org/10.2118/16402-PA

    Article  Google Scholar 

  17. Miller WK II, Peterson RE, Stevens JE, Lackey CB, Harrison CW (1994) In-situ stress profiling and prediction of hydraulic fracture azimuth for the West Texas Canyon Sands formation. SPE Prod Facil 9(3):204. https://doi.org/10.2118/21848-PA

    Article  Google Scholar 

  18. Wileveau Y, Cornet FH, Desroches J, Plumling P (2007) Complete in situ stress determination in an argillite sedimentary formation. Phys Chem Earth 32:866–878. https://doi.org/10.1016/j.pce.2006.03.018

    Article  Google Scholar 

  19. Labudovic V (1984) The effect of poisson’s ratio on fracture height. J Pet Technol 36(2):287–290. https://doi.org/10.2118/10307-PA

    Article  Google Scholar 

  20. Li CH, Chen M, Jin Y (2002) Experimental study on hydraulic fracturing of layered media. In: The Seventh Academic Conference of Chinese Society of Rock Mechanics and Engineering, Xi'an, China

  21. Tan P, Jin Y (2017) Analysis of hydraulic fracture initiation and vertical propagation behavior in laminated shale formation. Fuel 206:482–493. https://doi.org/10.1016/j.fuel.2017.05.033

    Article  Google Scholar 

  22. Zhang GM, Liu H, Zhang J et al (2010) Three-dimensional finite element simulation and parametric study for horizontal well hydraulic fracture. J Petrol Sci Eng 72(3–4):310–317. https://doi.org/10.1016/j.petrol.2010.03.032

    Article  Google Scholar 

  23. Warpinski NR, Clark JA, Schmidt RA et al (1982) Laboratory investigation on the effect of in-situ stresses on hydraulic fracture containment. Int J Rock Mech Mining Sci Geomech Abstr 19(6):333–340. https://doi.org/10.2118/9834-PA

    Article  Google Scholar 

  24. Teufel LW, Clark JA (1984) Hydraulic fracture propagation in layered rock: experimental studies of fracture containment. SPE J 24(01):19–32. https://doi.org/10.2118/9878-PA

    Article  Google Scholar 

  25. Warpinski NR, Schmidt RA, Northrop DA (1982) In-situ stresses: the predominant influence on hydraulic fracture containment. J Pet Technol 34(03):653–664. https://doi.org/10.2118/8932-PA

    Article  Google Scholar 

  26. Fisher K, Warpinski NR (2011) Hydraulic fracture-height growth: real data. SPE Annual Tech Conf Exhib Denver Colo USA. https://doi.org/10.2118/145949-PA

    Article  Google Scholar 

  27. Jin Y, Chen M, Zhou J, Geng YD (2008) Experimental study on the effects of salutatory barrier on hydraulic fracture propagation of cement blocks. ACTA PETROLEI SINICA 29(2):300–303

    Google Scholar 

  28. Warpinski NR, Teufel LW (1987) Influence of geologic discontinuities on hydraulic fracture propagation. J Pet Technol 39(2):209–220. https://doi.org/10.2118/13224-PA

    Article  Google Scholar 

  29. Hossain MM, Rahman MK (2008) Numerical simulation of complex fracture growth during tight reservoir stimulation by hydraulic fracturing. J Pet Sci Eng 60(2):86–104. https://doi.org/10.1016/j.petrol.2007.05.007

    Article  Google Scholar 

  30. Rahman MM, Hossain MM, Crosby DG et al (2002) Analytical, numerical and experimental investigations of transverse fracture propagation from horizontal wells. J Pet Sci Eng 35(3):127–50. https://doi.org/10.1016/S0920-4105(02)00236-X

    Article  Google Scholar 

  31. Tan P, Jin Y, Pang HW (2021) Hydraulic fracture vertical propagation behavior in transversely isotropic layered shale formation with transition zone using XFEM-based CZM method. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2021.107707

    Article  Google Scholar 

  32. Zhang F, Dontsov E, Mack M (2017) Fully coupled simulation of hydraulic fracture interacting with natural fractures with a hybrid discrete-continuum method. Int J Numer Anal Methods Geomech 41(13):1430–1452. https://doi.org/10.1002/nag.2682

    Article  Google Scholar 

  33. Zhang F, Damjanac B, Maxwell S (2019) Investigating hydraulic fracturing complexity in naturally fractured rock masses using fully coupled multiscale numerical modeling. Rock Mech Rock Eng 52(12):5137–5160. https://doi.org/10.1007/s00603-019-01851-3

    Article  Google Scholar 

  34. Barenblatt GI (1962) The mathematical theory of equilibrium of cracks in brittle fracture. Adv Appl Mech 7:55–129. https://doi.org/10.1016/S0065-2156(08)70121-2

    Article  MathSciNet  Google Scholar 

  35. Dugdale DS (1960) Yielding of steel sheets containing slits. J Mech Phys Solids 8(2):100–104. https://doi.org/10.1016/0022-5096(60)90013-2

    Article  Google Scholar 

  36. Chen Z (2012) Finite element modelling of viscosity-dominated hydraulic fractures. J Pet Sci Eng 88–89:136–144. https://doi.org/10.1016/j.petrol.2011.12.021

    Article  Google Scholar 

  37. Yao Y, Liu L, Keer LM (2015) Pore pressure cohesive zone modeling of hydraulic fracture in quasi-brittle rocks. Mech Mater 83:17–29. https://doi.org/10.1016/j.mechmat.2014.12.010

    Article  Google Scholar 

  38. Chen Z, Jeffery R, Zhang X (2015) Numerical modeling of three-dimensional T-Shaped hydraulic fractures in coal seams using a cohesive zone finite element model. Hydraul Fract J 2(2):20–37

    Google Scholar 

  39. Chen Z, Bunger AP et al (2009) Cohesive zone finite element-based modeling of hydraulic fractures. Acta Mech Solida Sin 22(5):443–452. https://doi.org/10.1016/S0894-9166(09)60295-0

    Article  Google Scholar 

  40. Guo J, Luo B, Lu C, Lai J, Ren J (2017) Numerical investigation of hydraulic fracture propagation in a layered reservoir using the cohesive zone method. Eng Fract Mech 186:195–207. https://doi.org/10.1016/j.engfracmech.2017.10.013

    Article  Google Scholar 

  41. Nolte KG (1979) Determination of fracture parameters from fracturing pressure decline. SPE. https://doi.org/10.2118/8341-MS

    Article  Google Scholar 

  42. Nolte KG, Maniere JL, Owens KA (1997) After-closure analysis of fracture calibration tests. SPE. https://doi.org/10.2118/38676-MS

    Article  Google Scholar 

  43. Barree RD, Mukherjee H (1996) Determination of Pressure dependent Leakoff and Its Effects on Fracture Geometry. The SPE Annual Technical Conference and Exhibition, Denver, Colorado, USA SPE. https://doi.org/10.2118/36424-MS

    Article  Google Scholar 

  44. Barree RD (2000) Adapting high permeability leakoff analysis to low permeability sands for estimating reservoir engineering parameters. The SPE Rocky Mountain Regional/Low Permeability Reservoirs Symposium, Denver, Colorado, USA SPE. https://doi.org/10.2118/60291-MS

    Article  Google Scholar 

  45. iStress, (2021) Manual for determining the minimum horizontal stress following the G function method. China, HNSH Corp, Chengdu

    Google Scholar 

  46. Hickman SH, Zoback MD (1983) The interpretation of hydraulic fracturing pressuretime data for in situ stress determination. National Academy Press, Washington, D.C, Hydraulic Fracturing Measurements

    Google Scholar 

  47. Fjaer E, Holt RM, Horstrud M et al (2008) Petroleum related rock mechanics, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  48. Wagner D, Muller B, Tingay M (2004) Correcting for tool decentralization of oriented six-arm caliper logs for determination of contemporary tectonic stress orientation. Petrophysics 45(6):530–539

    Google Scholar 

  49. Wang Z (2000) Dynamic versus static elastic properties of reservoir rocks. J Seismic Acoustic Velocities Reservoir Rocks 3:531–539

    Google Scholar 

  50. Asef MR, Farrokhrouz M (2017) A semi-empirical relation between static and dynamic elastic modulus. J Petrol Sci Eng 157:359–363. https://doi.org/10.1016/j.petrol.2017.06.055

    Article  Google Scholar 

  51. Rider MH, Kennedy M (2011) The Geological Interpretation of Well Logs 3rd, revised. Rider-French Consulting Limited. Whittles Publishing Dunbeath, Scotland, pp 131–134

    Google Scholar 

  52. Moos D, Zoback MD et al (1999) Feasibility study of the stability of openhole multilaterals. 1999 SPE Mid-continent Operations Symposium, Oklahoma City, Society of Petroleum Engineers, Cook Inlet, Alaska. https://doi.org/10.2118/73192-PA

    Book  Google Scholar 

  53. Coates GR, Denoo SA (1981) Mechanical properties program using borehole analysis and Mohr’s Circle. In: SPWL A 22nd Annual logging symposium strans actions SPWLA-1981-DD. OnePetro: urban

  54. Chen M, Jin Y, Zhang GQ (2008) Rock mechanics in petroleum engineering. Science Press, Beijing

    Google Scholar 

  55. Eaton BA (1975) The equation for geopressure prediction from well logs. Soc Pet Eng AIME SPE. https://doi.org/10.2118/5544-MS

    Article  Google Scholar 

  56. ABAQUS, 2014. Abaqus theory guide, version 6.14, Dassault Systèmes Simulia Corp, Providence, RI USA

  57. Camanho PP, Davila CG (2002) Mixed-mode decohesion finite elements for the simulation of delamination in composite materials NASA/TM-2002–211737. pp:1–42

  58. Qiao GR, Cai HW, Zhou AN et al (2016) Coal quality prediction model of drilling coal based on kriging interpolation method. Coal Technol 35(02):151–153

    Google Scholar 

  59. Dillen MWP, Cruts HMA, Groenenboom J et al (1999) Ultrasonic velocity and shear-wave splitting behavior of a Colton sandstone under a changing triaxial stress. Geophysics 64(5):1603–1607. https://doi.org/10.1190/1.1444664

    Article  Google Scholar 

  60. Tang XM, Patterson D, Hinds M (2001) Evaluating hydraulic fracturing in cased holes with cross-dipole acoustic technology. SPE Res Eval Eng 4(04):281–288. https://doi.org/10.2118/72500-PA

    Article  Google Scholar 

  61. Tang XM, Patterson D (2009) Single-well S-wave imaging using multicomponent dipole acoustic-log data. Geophysics 74:211–223. https://doi.org/10.1190/1.3227150

    Article  Google Scholar 

  62. Lee SQ, Tang XM, Su YD (2019) Shear wave imaging to determine near-borehole faults for ocean drilling exploration. Geophys J Int 217(1):288–293. https://doi.org/10.1093/gji/ggz023

    Article  Google Scholar 

Download references

Acknowledgements

The author would like to acknowledge the financial support provided by China's National Major Science and Technology Projects (Grant No. 2017ZX05009-003) and China Scholarship Council. Gratitude is also attributed to the Xinjiang Oilfield Corporation for providing us with the in situ cores and the field data.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Botao Lin.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, C., Lin, B., Yu, H. et al. Characterization of hydraulic fracture configuration based on complex in situ stress field of a tight oil reservoir in Junggar Basin, Northwest China. Acta Geotech. 18, 757–775 (2023). https://doi.org/10.1007/s11440-022-01607-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01607-4

Keywords

Navigation