Skip to main content

Experimental study on the shear characteristics of quartz sand exposed to high temperatures

Abstract

We have investigated the evolution of the shear characteristics of quartz sand subjected to high temperatures present in long-runout landslides. Quartz sand samples were subjected to quantitative heat treatment at a range of peak temperatures. Based on the principle of the irreversibility of mechanical characteristics of soil materials after heating, dynamic ring-shear experiments were subsequently performed and the sample density and X-ray powder diffraction patterns were analyzed. The shear behavior, shear strength, residual shear stress, density of samples, particle size variation, and mineral composition variation were analyzed and the main conclusions are as follows: (1) quartz sand that has been exposed to high temperatures is more easily broken and its density changes; (2) particle size has a substantial influence on the residual shear stress and the amplitude of shear stress fluctuation; (3) copper-gold-iron was found in the samples after heat treatment. We interpret this to mean that a small quantity of metallic elements in the quartz can have adverse effects on the shear properties of the sand with exposure to high temperature.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

modified from Zhao et al. [38])

Fig. 13

modified from Zhao et al. [38])

Fig. 14

References

  1. Bailey JE, Hirsch PB (1962) The crystallization process in some polycrystalline metals. Proc R Soc Lond A 267:11–30. https://doi.org/10.2307/2414053

    Article  Google Scholar 

  2. Chen YL, Wang SR, Ni J et al (2017) An experimental study of the mechanical properties of granite after high temperature exposure based on mineral characteristics. Eng Geol 220:234–242. https://doi.org/10.1016/j.enggeo.2017.02.010

    Article  Google Scholar 

  3. Davies TRH (1982) Spreading of rock avalanche debris by mechanical fluidization. Rock Mech 15(1):9–24. https://doi.org/10.1016/0148-9062(82)91422-x

    Article  Google Scholar 

  4. Dunlap W, Hirth G, Teyssier C (1997) Thermomechanical evolution of a ductile duplex. Tectonics 16(6):983–1000. https://doi.org/10.1029/97tc00614

    Article  Google Scholar 

  5. Drury MR, Humphreys FJ, White SH (1985) Large starin deformation studies using polycrystalline magnesium as a rock analogue. Part II: dynamic recrystallisation mechsnisms at high temperatures. Phys Earth Planet Int 40:208–222. https://doi.org/10.1016/0031-9201(85)90131-1

    Article  Google Scholar 

  6. Habib P (1975) Production of gaseous pore pressure during rock slides. Rock Mech Rock Eng 7(4):193–197. https://doi.org/10.1007/bf01246865

    Article  Google Scholar 

  7. Han R, Hirose T, Shimamoto T (2010) Strong velocity weakening and powder lubrication of simulated carbonate faults at seismic slip rates. J Geophs Res-Solid Earth 115:B03412. https://doi.org/10.1029/2008jb006136

    Article  Google Scholar 

  8. Han R, Shimamoto T, Hirose T et al (2007) Ultralow friction of carbonate faults caused by thermal decomposition. Science 316(5826):878–881. https://doi.org/10.1126/science.1139763

    Article  Google Scholar 

  9. He SH, Shan HF, Xia TD et al (2020) The effect of temperature on the drained shear behavior of calcareous sand. Acta Geotech 16(2):613–633. https://doi.org/10.1007/s11440-020-01030-7

    Article  Google Scholar 

  10. Hsü KJ (1975) Catastrophic debris streams (Sturzstroms) generated by rockfalls. Geol Soc Am Bull 86:129–140. https://doi.org/10.1130/0016-7606(1975)86%3c129:cdssgb%3e2.0.co;2

    Article  Google Scholar 

  11. Hu W, Huang RQ, McSaveney M et al (2018) Mineral changes quantify frictional heating during a large low-friction landslide. Geology 46(3):223–226. https://doi.org/10.1130/G39662.1

    Article  Google Scholar 

  12. Hu W, McSaveney M et al (2018) A polished and striated pavement formed by a rock avalanche in under 90s mimics a glacially striated pavement. Geomorphology 320:154–161. https://doi.org/10.1016/j.geomorph.2018.08.011

    Article  Google Scholar 

  13. Hu W, Huang RQ, McSaveney M et al (2019) Superheated steam, hot CO2 and dynamic recrystallization from frictional heat jointly lubricated a giant landslide: field and experimental evidence. Earth Planet Sci Lett 510:85–93. https://doi.org/10.1016/j.epsl.2019.01.005

    Article  Google Scholar 

  14. Le Chatelier H (1889) Sur la dilatation du quartz. Compt Rend de l’Acad Sci Paris 108(3):1046–1049. https://doi.org/10.3406/bulmi.1890.2156

    Article  Google Scholar 

  15. Li YR, Wen BP, Aydin A et al (2013) Ring shear tests on slip zone soils of three giant landslides in the Three Gorges Project area. Eng Geol 154:106–115. https://doi.org/10.1016/j.enggeo.2012.12.015

    Article  Google Scholar 

  16. Lian BQ, Peng JB, Wang XG et al (2019) Moisture content effect on the ring shear characteristics of slip zone loess at high shearing rates. Bull Eng Geol Env 79:999–1008. https://doi.org/10.1007/s10064-019-01597-w

    Article  Google Scholar 

  17. Ma C, Zhan HB, Zhang T et al (2019) Investigation on shear behavior of soft interlayers by ring shear tests. Eng Geol 254:34–42. https://doi.org/10.1016/j.enggeo.2019.04.002

    Article  Google Scholar 

  18. Ma SL, Yao L, Shimamoto T et al (2014) Progress in high-velocity frictional experiments on rocks at state key laboratory of earthquake dynamics. Seismol Geol 36(3):814–824. https://doi.org/10.1016/j.enggeo.2019.04.002

    Article  Google Scholar 

  19. Mechie J, Sobolev S, Ratschbacher L et al (2004) Precise temperature estimation in the Tibetan crust from seismic detection of the alpha-beta quartz transition. Geology 32(7):601–604. https://doi.org/10.1130/G20367.1

    Article  Google Scholar 

  20. Peng ZW, Redfern SAT (2013) Mechanical properties of quartz at the α-β phase transition: Implications for tectonic and seismic anomalies. Geochem Geophys Geosyst 14(1):18–28. https://doi.org/10.1029/2012GC004482

    Article  Google Scholar 

  21. Sheng LT, Hsiau SS, Hsu NW (2021) Experimental study of the dynamic behavior and segregation of density-bidisperse granular sliding masses at the laboratory scale. Landslides. https://doi.org/10.1007/s10346-021-01629-1

    Article  Google Scholar 

  22. Shreve RL (1959) Geology and mechanics of the Blackhawk landslide, Lucerne Valley, California. Doctor Degree, California Institute of Technology Pasadena, California

  23. Shibasaki T, Matsuura S, Hasegawa Y (2017) Temperature-dependent residual shear strength characteristics of smectite-bearing landslide soils. J Geophys Res: Solid Earth 122:1449–1469. https://doi.org/10.1002/2016JB013241

    Article  Google Scholar 

  24. Stipp M, Stunitz H, Heilbronner R et al (2002) The eastern Tonale fault zone: a ‘natural laboratory’ for crystal plastic deformation of quartz over a temperature range from 250 to 700 °C. J Struct Geol 24(12):1861–1884. https://doi.org/10.1016/S0191-8141(02)00035-4

    Article  Google Scholar 

  25. Sun Q, Zhang ZZ, Xue L et al (2013) Physical-mechanical properties variation of rock with phase transformation under high temperature. Chin J Rock Mech Eng 32(5):935–942 (in Chinese)

    Google Scholar 

  26. Tiskatine R, Eddemani A, Gourdo L et al (2016) Experimental evaluation of thermo-mechanical performances of andidate rocks for use in high temperature thermal storage. Appl Energy 171:243–255. https://doi.org/10.1016/j.apenergy.2016.03.061

    Article  Google Scholar 

  27. Wang LN, Han J, Yin XM et al (2020) effect of moisture content and shearing speed on shear zone structure in fine-grained soils at large displacement. Arab J Geosci 13:247. https://doi.org/10.1007/s12517-020-5237-8

    Article  Google Scholar 

  28. Wang SR, Huang Y (2022) Experimental study on the effect of particle size on the shear characteristics of large-displacement soil exposed to heat treatment: shear fluctuation and heat degradation. Eng Geol 300:106581. https://doi.org/10.1016/j.enggeo.2022.106581

    Article  Google Scholar 

  29. Wang YF, Cheng QQ, Zhu Q (2015) Surface microscopic examination of quartz grains from rock avalanche basal facies. Can Geotech J 52(2):167–181. https://doi.org/10.1139/cgj-2013-0284

    Article  Google Scholar 

  30. Wang YF, Dong JJ, Cheng QG (2017) Velocity-dependent frictional weakening of large rock avalanche basal facies: implications for rock avalanche hypermobility? J Geophys Res: Solid Earth 122(3):1648–1676. https://doi.org/10.1002/2016JB013624

    Article  Google Scholar 

  31. Wang YF, Xu Q, Cheng QG et al (2016) Spreading and deposit characteristics of a rapid dry granular avalanche across 3D topography: experimental study. Rock Mech Rock Eng 49(11):4349–4370. https://doi.org/10.1007/s00603-016-1052-7

    Article  Google Scholar 

  32. Wu QW, Li TC (1986) Analyses of formation mechanism and sliding velocity of vast landslides of poorly consolidated rocks. Mount Res 4(1):47–53 (in Chinses)

    Google Scholar 

  33. Xi DY (1994) Physical characteristics of mineral phase transition in the granite. ACTA Miner Sin 14(3):223–227. https://doi.org/10.16461/j.cnki.1000-4734.1994.03.003 (in Chinese)

    Article  Google Scholar 

  34. Yao L, Ma SL (2013) Experimental simulation of coseismic fault sliding-significance, technological methods and research progress of high-velocity frictional experiments. Prog Geophys 28(2):0607–0623. https://doi.org/10.6038/pg20130210 (in Chinese)

    Article  Google Scholar 

  35. Yuan WN, Fan W, Jiang CC et al (2019) Experimental study on the shear behavior of loess and paleosol based on ring shear tests. Eng Geol 250:11–20. https://doi.org/10.1016/j.enggeo.2019.01.007

    Article  Google Scholar 

  36. Zhang YJ (2012) The resources characteristics and prospecting perspective of glass sand mineral in Zhangpu county, Fujian province. Geol Fujian 31(1):27–31 (in Chinese)

    Google Scholar 

  37. Zhao LY, Huang Y (2021) Insights into the dynamic and thermal characteristics of rockslide motion: a model experiment. Acta Geotech. https://doi.org/10.1007/s11440-021-01212-x

    Article  Google Scholar 

  38. Zhao SR, Bian QJ, Wang QY (2011) Crystallography and mineralogy. Higher Education Press, Beijing. https://doi.org/10.3969/j.issn.1001-3970.2012.01.004 (in Chinese)

    Book  Google Scholar 

  39. Zhu HH, Yan ZG, Deng T et al (2006) Testing study on mechanical properties of tuff, granite and breccia after high temperature. Chin J Rock Mech Eng 25(10):1945–1950. https://doi.org/10.1016/S1872-1508(06)60035-1 (in Chinese)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 42107168, 41831291, 42120104008).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Huang, Y. Experimental study on the shear characteristics of quartz sand exposed to high temperatures. Acta Geotech. (2022). https://doi.org/10.1007/s11440-022-01603-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-022-01603-8

Keywords

  • High temperature
  • Quartz sand
  • Ring-Shear test
  • Shear characteristics