Skip to main content

A bond-based smoothed particle hydrodynamics considering frictional contact effect for simulating rock fracture

Abstract

A bond-based smoothed particle hydrodynamics considering hybrid friction contact (BB-SPH-HFC) method is proposed to simulate the dynamic friction behavior during crack initiation and propagation in rock samples with pre-existing fractures under compressive loading. In the SPH program, the interactions between particles are transmitted through virtual bonds. According to the Mohr–Coulomb criterion and the maximum tensile stress criterion, the fracture of virtual bonds is determined to capture the crack propagation and coalescence modes during rock fracture. In addition, a hybrid friction contact (HFC) algorithm based on particle–segment friction contact (PSFC) and particle–particle friction contact (PPFC) was embedded in the BB-SPH model to simulate the friction-slip process between pre-existing fracture surfaces. In the HFC algorithm, the contact force is determined based on the ideal plastic collision assumption, and the PSFC and PPFC algorithms are used for the contact detection of the structure particles on the contact surface and structure particles at the corners, respectively. Numerical results show that the HFC algorithm is more accurate and stable than the traditional PPFC and PSFC algorithms. Finally, the accuracy and robustness of the BB-SPH-HFC method are verified by several numerical examples, and the numerical results are in good agreement with the theoretical and experimental results.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig.13
Fig.14
Fig.15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30

References

  1. Allix O (2013) The bounded rate concept: a framework to deal with objective failure predictions in dynamic within a local constitutive model. Int J Damage Mech 22(6):808–828

    Article  Google Scholar 

  2. Aronov V, D’souza AF, Kalpakjian S, Shareef I (1983) Experimental investigation of the effect of system rigidity on wear and friction-induced vibrations. J Lubr Technol 105(2):206–211

    Article  Google Scholar 

  3. Babuška I, Melenk JM (1997) The partition of unity method. Int J Numer Methods Eng 40(4):727–758

    MathSciNet  MATH  Article  Google Scholar 

  4. Barbero M, Barla G, Zaninetti A (1996) Dynamic shear strength of rock joints subjected to impulse loading. Int J Rock Mech Mining Sci Geomech Abstr Pergamon 33(2):141–151

    Article  Google Scholar 

  5. Bayram YB, Nied HF (2000) Enriched finite element-penalty function method for modeling interface cracks with contact. Eng Fract Mech 65(5):541–557

    Article  Google Scholar 

  6. Belytschko T, Lin JI (1987) A three-dimensional impact penetration algorithm with erosion. Int J Impact Eng 5(1):111–127

    MATH  Article  Google Scholar 

  7. Benz W, Asphaug E (1995) Simulations of brittle structure and solid particles s using smooth particle hydrodynamics. Comput Phys Commun 87:253–265

    MATH  Article  Google Scholar 

  8. Bi J, Zhou XP (2017) Numerical simulation of kinetic friction in the fracture process of rocks in the framework of General Particle Dynamics. Comput Geotech 83:1–15

    Article  Google Scholar 

  9. Bonet J, Kulasegaram S (2000) Correction and stabilization of smooth particle hydrodynamics methods with applications in metal forming simulations. Int J Numer Methods Eng 47:1189–1214

    MATH  Article  Google Scholar 

  10. Campbell J, Vignjevic R, Libersky L (2000) A contact algorithm for smoothed particle hydrodynamics. Comput Method Appl Mech Eng 184(1):49–65

    MathSciNet  MATH  Article  Google Scholar 

  11. Campos LT, Oden JT, Kikuchi N (1982) A numerical analysis of a class of contact problems with friction in elastostatics. Comput Methods Appl Mech Eng 34(1):821–845

    MathSciNet  MATH  Article  Google Scholar 

  12. Chakraborty S, Islam MRI, Shaw A, Ramachandra LS, Reid SR (2017) A computational framework for modelling impact induced damage in ceramic and ceramic-metal composite structures. Compos Struct 164:263–276

    Article  Google Scholar 

  13. Chakraborty S, Shaw A (2013) A pseudo-spring based fracture model for SPH simulation of impact dynamics. Int J Impact Eng 58:84–95

    Article  Google Scholar 

  14. Chen JK, Beraun JE, Carney TC (1999) A corrective smoothed particle method for boundary value problems in heat conduction. Int J Numer Methods Eng 46:231–252

    MATH  Article  Google Scholar 

  15. Cheng H, Zhou XP (2019) Numerical simulation of the dynamic frictional contact problem for crack slip based on the multidimensional space method. J Eng Mech 145(2):04018128

    MathSciNet  Article  Google Scholar 

  16. Cheng H, Zhou XP, Zhu J, Qian QH (2016) The effects of crack openings on crack initiation, propagation and coalescence behavior in rock-like materials under uniaxial compression. Rock Mech Rock Eng 49(9):3481–3494

    Article  Google Scholar 

  17. Feldman J, Bonet J (2007) Dynamic refinement and boundary contact forces in SPH with applications in fluid flow problems. Int J Numer Methods Eng 72(3):295–324

    MathSciNet  MATH  Article  Google Scholar 

  18. Giner E, Tur M, Tarancón JE, Fuenmayor FJ (2010) Crack face contact in X-FEM using a segment-to-segment approach. Int J Numer Methods Eng 82(11):1424–1449

    MathSciNet  MATH  Article  Google Scholar 

  19. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389

    MATH  Article  Google Scholar 

  20. Gutfraind R, Savage SB (1997) Smoothed particle hydrodynamics for the simulation of broken-ice fields: Mohr–Coulomb-Type rheology and frictional boundary conditions. J Comput Phys 134:203–215

    MATH  Article  Google Scholar 

  21. Hallquist JO (1998) LS-DYNA theoretical manual. Livermore Software Technology Corporation, Livermore

    Google Scholar 

  22. Howard I, Jia S, Wang J (2001) The dynamic modelling of a spur gear in mesh including friction and a crack. Mech Syst Signal Process 15(5):831–853

    Article  Google Scholar 

  23. Islam MRI, Chakraborty S, Shaw A, Reid S (2017) A Computational model for failure of ductile material under impact. Int J Impact Eng 108:334–347

    Article  Google Scholar 

  24. Islam MRI, Peng C (2019) A Total Lagrangian SPH method for modelling damage and failure in solids. Int J Mech Sci 157–158:498–511

    Article  Google Scholar 

  25. James MB, Newton JM (1985) The influence of surface topography on the dynamic friction between acetyls alicyclic acid compacts and steel. J Mater Sci 20(4):1333–1340

    Article  Google Scholar 

  26. Kana DD, Fox DJ, Hsiung SM (1996) Interlock/friction model for dynamic shear response in natural jointed rock. Int J Rock Mech Min Sci Geomech Abstr Pergamon 33(4):371–386

    Article  Google Scholar 

  27. Kim TY, Dolbow J, Laursen T (2007) A mortared finite element method for frictional contact on arbitrary interfaces. Comput Mech 39(3):223–235

    MATH  Article  Google Scholar 

  28. Kostetskii BI, Nazarenko PV (1966) Study of dislocation structure for static and dynamic friction. Mater Sci 1(1):49–52

    Article  Google Scholar 

  29. Li DX, Wang EY, Li N, Kong XG, Wang XR (2017) Research on the coal characteristics of macro-crack dip angles under uniaxial compression. Chin J Rock Mech Eng 36(S1):3206–3213 (in Chinese)

    Google Scholar 

  30. Li N, Zhang P, Duan QW (2003) Dynamic damage model of the rock mass medium with microjoints. Int J Damage Mech 12(2):163–173

    Article  Google Scholar 

  31. Li Z, Guo DP, Zhou XP, Wang YT (2019) Numerical simulation of the propagation and coalescence of cracks using peridynamics. Rock Soil Mech 40(12):711–4721

    Google Scholar 

  32. Libersky LD, Petschek AG, Carney TC, Hipp JR, Allahdadi FA (1993) High strain Lagrangian hydrodynamics: a three dimensional SPH code for dynamic material response. J Comput Phys 109(1):67–75

    MATH  Article  Google Scholar 

  33. Liu FS, Borja RI (2008) A contact algorithm for frictional crack propagation with the extended finite element method. Int J Numer Methods Eng 76(10):1489–1512

    MathSciNet  MATH  Article  Google Scholar 

  34. Liu GR, Liu MB (2003) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific Pub Co Inc.

    MATH  Book  Google Scholar 

  35. Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8–9):1081–1106

    MathSciNet  MATH  Article  Google Scholar 

  36. Lucy LB (1977) A numerical approach to testing the fission hypothesis. Astron J 82:1013–1024

    Article  Google Scholar 

  37. Melenk JM, Babuška I (1996) The partition of unity finite element method: basic theory and applications. Comput Methods Appl Mech Eng 139(1):289–314

    MathSciNet  MATH  Article  Google Scholar 

  38. Monaghan JJ (1988) An introduction to SPH. Comput Phys Commun 48(1):89–96

    MATH  Article  Google Scholar 

  39. Monaghan JJ (1989) On the problem of penetration in particle methods. J Comput Phys 82:1–15

    MATH  Article  Google Scholar 

  40. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astr 30:543–574

    Article  Google Scholar 

  41. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110(2):399–406

    MATH  Article  Google Scholar 

  42. Monaghan JJ, Gingold RA (1983) Shock simulation by the particle method SPH. J Comput Phys 52:374–389

    MATH  Article  Google Scholar 

  43. Monaghan JJ, Kajtar JB (2009) SPH particle boundary forces for arbitrary boundaries. Comput Phys Commun 180:1811–1820

    MathSciNet  MATH  Article  Google Scholar 

  44. Morris JP, Fox PJ, Zhu Y (1997) Modeling low Reynolds number flows using SPH. J Comput Phys 136(1):214–226

    MATH  Article  Google Scholar 

  45. Mu DR, Zhang DY, Tang AP, Qu HG, Li ZM (2022) Numerical simulation of rock thermal fracture considering friction effect in the framework of smooth particle hydrodynamics based on total Lagrangian formula. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-021-02737-z

    Article  Google Scholar 

  46. Neumann JV, Richtmyer RD (1950) A method for the numerical calculation of hydrodynamic shocks. J Appl Phys 21:232–237

    MathSciNet  MATH  Article  Google Scholar 

  47. Oden JT, Martins JAC (1985) Models and computational methods for dynamic friction phenomena. Comput Methods Appl Mech Eng 52(1):527–634

    MathSciNet  MATH  Article  Google Scholar 

  48. Paluszny A, Matthai SK (2009) Numerical modeling of discrete multi-crack growth applied to pattern formation in geological brittle media. Int J Solids Struct 46(18–19):3383–3397

    MATH  Article  Google Scholar 

  49. Parshikov AN, Medin SA (2002) Smoothed particle hydrodynamics using interparticle contact algorithms. J Comput Phys 180:358–382

    MATH  Article  Google Scholar 

  50. Ren MK, Gu JF, Li Z, Ruan SL, Shen CY (2021) Simulation of polymer melt injection molding filling flow based on an improved SPH method with modified low-dissipation Riemann solver. Macromol Theor Simul. https://doi.org/10.1002/mats.202100029

    Article  Google Scholar 

  51. Seo S, Min O (2006) Axisymmetric SPH simulation of elasto-plastic contact in the low velocity impact. Comput Phys Commun 175:583–603

    MathSciNet  MATH  Article  Google Scholar 

  52. Shao J, Li H, Liu G, Liu M (2012) An improved SPH method for modeling liquid sloshing dynamics. Comput Struct 100:18–26

    Article  Google Scholar 

  53. Shaw A, Reid SR (2009) Applications of SPH with the acceleration correction algorithm in structural im-pact computations. Curr Sci India 97(8):1177–1186

    Google Scholar 

  54. Shaw A, Reid SR (2009) Heuristic acceleration correction algorithm for use in SPH computations in im-pact mechanics. Comput Methods Appl Mech Eng 198(49–52):3962–3974

    MATH  Article  Google Scholar 

  55. Shou YD, Zhou XP, Qian QH (2017) Dynamic model of the zonal disintegration of rock surrounding a deep spherical cavity. Int J Geomech 17(6):04016127

    Article  Google Scholar 

  56. Silling SA (2000) Reformulation of elasticity theory for discontinuities and long-range forces. J Mech Phys Solids 48(1):175–209

    MathSciNet  MATH  Article  Google Scholar 

  57. Takeda H, Miyama SM, Sekiya M (1994) Numerical simulation of viscous flow by smoothed particle hydrodynamics. Prog Theor Phys 92(5):939–960

    Article  Google Scholar 

  58. Wang J, Chan D (2014) Frictional contact algorithms in SPH for the simulation of soil–structure interaction. Int J Numer Anal Methods Geomech 38(7):747–770

    Article  Google Scholar 

  59. Wang J, Wu H, Gu C, Hua H (2013) Simulating frictional contact in smoothed particle hydrodynamics. Sci China Technol Sci 56(7):1779–1789

    Article  Google Scholar 

  60. Wong RHC, Chau KT (1998) Crack coalescence in a rock-like material containing two cracks. Int J Rock Mech Min 35(2):147–164

    Article  Google Scholar 

  61. Wu ZJ, Wong LNY (2012) Frictional crack initiation and propagation analysis using the numerical manifold method. Comput Geotech 39(1):38–53

    Article  Google Scholar 

  62. Xu XY, Deng XL (2016) An improved weakly compressible SPH method for simulating free surface flows of viscous and viscoelastic fluids. Comput Phys Commun 201:43–62

    MathSciNet  MATH  Article  Google Scholar 

  63. Yang HQ, Liu JF, Liu BL (2018) Investigation on the cracking character of jointed rock mass beneath TBM disc cutter. Rock Mech Rock Eng 51(4):1263–1277

    Article  Google Scholar 

  64. Zavarise G, DeL L (2009) The node-to-segment algorithm for 2D frictionless contact: classical formulation and special cases. Comput Methods Appl Mech Eng 198(41–44):3428–3451

    MathSciNet  MATH  Article  Google Scholar 

  65. Zavarise G, Wriggers P (1998) A segment-to-segment contact strategy. Math Comput Model 28(4–8):497–515

    MATH  Article  Google Scholar 

  66. Zhan L, Peng C, Zhang B, Wu W (2020) A SPH framework for dynamic interaction between soil and rigid body system with hybrid contact method. Int J Numer Anal Methods 44:1446–1471

    Article  Google Scholar 

  67. Zhou XP, Bi J (2018) Numerical simulation of thermal cracking in rocks based on general particle dynamics. J Eng Mech 144(1):04017156

    Article  Google Scholar 

  68. Zhou XP, Shou YD (2013) Excavation-induced zonal disintegration of the surrounding rock around a deep circular tunnel considering unloading effect. Int J Rock Mech Min 64:246–257

    Article  Google Scholar 

  69. Zhou XP, Wang YT (2016) Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics. Int J Rock Mech Min 89:235–249

    Article  Google Scholar 

  70. Zhou XP, Shou YD (2017) Numerical simulation of failure of rock-like material subjected to compressive loads using improved peridynamic method. Int J Geomech 17(3):04016086

    Article  Google Scholar 

  71. Zhou XP, Wang YT, Qian QH (2016) Numerical simulation of crack curving and branching in brittle materials under dynamic loads using the extended non-ordinary state-based peridynamics. Eur J Mech A-Solid 60:277–299

    MathSciNet  MATH  Article  Google Scholar 

  72. Zhou XP, Wang YT, Shou YD, Kou MM (2017) A novel conjugated bond linear elastic model in bond-based peridynamics for fracture problems under dynamic loads. Eng Fract Mech 188:151–183

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (2018YFC0809605). The financial support is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aiping Tang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mu, D., Tang, A., Li, Z. et al. A bond-based smoothed particle hydrodynamics considering frictional contact effect for simulating rock fracture. Acta Geotech. (2022). https://doi.org/10.1007/s11440-022-01569-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11440-022-01569-7

Keywords

  • Bond-based smoothed particle hydrodynamics
  • Dynamic friction
  • Hybrid friction contact
  • Ideal plastic collision
  • Pre-existing fractures
  • Virtual bonds