Skip to main content
Log in

MI-ECku: A novel methodology for estimating unsaturated hydraulic conductivity of porous media

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Numerous applications of hydraulic conductivity of porous media (e.g., soils, clay liners, rocks, concrete, ceramic filters, etc.) in their unsaturated state are well established in the field of geotechnical and agriculture engineering. In recent years, researchers have developed laboratory techniques by resorting to thermal flux sensors, electrical impedance spectroscopy, geotechnical centrifuge, and tensiometers, for determining the unsaturated hydraulic conductivity, ku, of the porous media. However, these methodologies and techniques are susceptible to yield ‘uncertain’, if not ‘erroneous’, results mainly: (i) due to the difficulties associated with maintaining uniform saturation of the specimen and (ii) intricacies in maintaining a pressure gradient along the porous media (having nanometric pore size) to facilitate flow at a constant suction. To overcome these limitations, a novel methodology, MI-ECku (read as, my-easy ku), that employs, (i) ‘modified Kozeny-Carmen relationship’ and the pore-size distribution characteristics (obtained from mercury intrusion porosimetry, MIP) and (ii) the electrical conductivity (obtained from impedance spectroscopy) of the porous media, has been proposed for determining ku. The robustness and ease of utilization of MI-ECku have been demonstrated by employing the standard porous media, SPM, which contains a rigid pore structure and inert mineralogy. It has been noticed that ku of the SPM determined by MI-ECku is in good agreement with those predicted by van Genuchten-Mualem model and hence it can be employed for estimating ku of various porous media such as compacted soils and rocks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

η :

Porosity

η MIP :

Porosity obtained from the mercury intrusion porosimetry results

S r :

Degree of saturation

K :

Intrinsic permeability

k :

Hydraulic conductivity

k r , k s and k u :

Relative, saturated and unsaturated hydraulic conductivity, respectively

µ :

Dynamic viscosity

d, d m and d avg :

Diameter, mode diameter and average diameter, respectively

Z :

Electrical Impedance

EC, EC s, and EC dry :

Electrical conductivity, saturated and dry state electrical conductivity, respectively

P :

Pressure

T :

Surface tension of mercury (= 0.48 N/m)

α :

Contact angle between mercury and SPM

c v :

Cumulative volume of the pores

v w and ww :

Volume and weight of water, respectively

c :

Pore shape coefficient

G :

Pore geometry

V :

Total volume of the SPM

θ, θ s and θ r :

Volumetric moisture content, saturated and residual moisture content

w :

Gravimetric water content

m:

Van Genuchten fitting parameter

k*:

Dielectric constant

RIC:

Relative increase in electrical conductivity

References

  1. Abu-Hassanein ZS, Benson CH, Blotz LR (1996) Electrical resistivity of compacted clays. J Geotech Eng 122(5):397–406. https://doi.org/10.1061/(ASCE)0733-9410(1996)122:5(397)

    Article  Google Scholar 

  2. Alonso EE, Gens A, Josa A (1990) Constitutive model for partially saturated soils. Géotechnique 40(3):405–430. https://doi.org/10.1680/geot.1990.40.3.405

    Article  Google Scholar 

  3. Altman DG, Bland JM (1983) Measurement in medicine: the analysis of method comparison studies. J R Stat Soc Ser D Stat 32(3):307–317. https://doi.org/10.2307/2987937

    Article  Google Scholar 

  4. Amaefule JOK, Wolfe JD, Walls AO, Ajufo, Peterson E (1986) Laboratory determination of effective liquid permeability in low-quality reservoir rocks by the pulse decay technique. In: Presented at the SPE California Regional Meeting, Oakland, California, 2–4 April, 1986, Society of Petroleum Engineers, Society of Petroleum Engineers, SPE-15149-MS. doi:https://doi.org/10.2118/15149-MS

  5. Arch J, Maltman A (1990) Anisotropic permeability and tortuosity in deformed wet sediments. J Geophys Res Solid Earth 95(B6):9035–9045. https://doi.org/10.1029/JB095iB06p09035

    Article  Google Scholar 

  6. ASTM D5084–16a (2016) Standard test methods for measurement of hydraulic conductivity of saturated porous materials using a flexible wall permeameter

  7. Benson C, Gribb M (1997) Measuring unsaturated hydraulic conductivity in the laboratory and the field. Unsaturated soil engineering practice. ASCE Geotech Spec Publ 68:113–168

    Google Scholar 

  8. Bhat AM, Rao BH, Singh DN (2007) A generalized relationship for estimating dielectric constant of soils. J ASTM Int 4(7):1–17. https://doi.org/10.1520/JAI100595

    Article  Google Scholar 

  9. Bicalho K. V, Correia AG, Ferreira SR, Fleureau JM, Marinho FA (2007). Filter paper method of soil suction measurement. In: Presented at the XIII panamerican conference on soil mechanics and geotechnical engineering, Isla Margarita, Venezuela.

  10. Boulin PF, Bretonnier P, Gland N (2010) Comparison of steady state method and transient methods for water permeability measurements in low permeability rocks. In: Presented at the AGU fall meeting, December, American Geophysical Union

  11. Carman PC (1956) Flow of gasses through porous media. Butterworths, London

    MATH  Google Scholar 

  12. Carman PC (1997) Fluid flow through granular beds. Trans Inst Chem Eng London 75(Supplement):1997. https://doi.org/10.1016/S0263-8762(97)80003-2

    Article  Google Scholar 

  13. Castellano S, Starace G, De Pascalis L, Lippolis M, Mugnozza GS (2016) Test results and empirical correlations to account for air permeability of agricultural nets. Biosys Eng 150:131–141. https://doi.org/10.1016/j.biosystemseng.2016.07.007

    Article  Google Scholar 

  14. Chapuis RP, Aubertin M (2003) On the use of the Kozeny-Carman equation to predict the hydraulic conductivity of soils. Can Geotech J 40(3):616–628. https://doi.org/10.1139/t03-013

    Article  Google Scholar 

  15. Coble RL (1958) Initial sintering of alumina and hematite. J Am Ceram Soc 41(2):55–62. https://doi.org/10.1111/j.1151-2916.1958.tb13519.x

    Article  Google Scholar 

  16. Cosentini RM, Della Vecchia G, Foti S, Musso G (2012) Estimation of the hydraulic parameters of unsaturated samples by electrical resistivity tomography. Géotechnique 62(7):583–594. https://doi.org/10.1680/geot.10.P.066

    Article  Google Scholar 

  17. Costa A (2006) Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption. Geophys Res Lett 33(2):L02318. https://doi.org/10.1029/2005GL025134

    Article  Google Scholar 

  18. Darayan S, Liu C, Shen LC, Shattuck D (1998) Measurement of electrical properties of contaminated soil. Geophys Prospect 46(5):477–488. https://doi.org/10.1046/j.1365-2478.1998.00104.x

    Article  Google Scholar 

  19. Doussan C, Ruy S (2009) Prediction of unsaturated soil hydraulic conductivity with electrical conductivity. Water Resour Res 45:W10408. https://doi.org/10.1029/2008WR007309

    Article  Google Scholar 

  20. Edward GE (1963) Porosity and bulk density of sedimentary rocks, Contributions to Geochemistry, U. S. Geological Survey Bulletin 1144-E, Washington

  21. Fatt I (1956) The network model of porous media, SPE-574-G. Society of Petroleum Engineers

  22. Firoozabadi A, Aziz K (1991) Relative permeabilities from centrifuge data. J Can Pet Technol. https://doi.org/10.2118/91-05-02

    Article  Google Scholar 

  23. Fredlund DG, Rahardjo H (1993) Soil mechanics for unsaturated soils. Wiley, USA, Canada

    Book  Google Scholar 

  24. Freeze RA (1971) Influence of the unsaturated flow domain on seepage through earth dams. Water Resour Res 7(4):929–941. https://doi.org/10.1029/WR007i004p00929

    Article  Google Scholar 

  25. Goh SG, Rahardjo H, Leong EC (2015) Modification of triaxial apparatus for permeability measurement of unsaturated soils. Soils Found 55(1):63–73. https://doi.org/10.1016/j.sandf.2014.12.005

    Article  Google Scholar 

  26. Gumaste SD, Singh DN (2010) Application of impedance spectroscopy for determining fabric anisotropy of fine-grained soils. J Test Eval 38(3):309–318. https://doi.org/10.1520/JTE102624

    Article  Google Scholar 

  27. Ho CK, Webb SW (eds) (2006) Gas transport in porous media, vol 20. Springer, Dordrecht

    Google Scholar 

  28. Houston SL, Houston WN, Zapata CE, Lawrence C (2001) Geotechnical engineering practice for collapsible soils. Geotech Geol Eng 19:333–355. https://doi.org/10.1023/A:101317822661527

    Article  Google Scholar 

  29. Jang J, Santamarina JC (2014) Evolution of gas saturation and relative permeability during gas production from hydrate-bearing sediments: Gas invasion vs. gas nucleation. J Geophys Res Solid Earth 119(1):116–126. https://doi.org/10.1002/2013JB010480

    Article  Google Scholar 

  30. Kalisz B, Łachacz A, Klasa A, Smólczyński S, Orzechowski M, Sowiński P (2015) Water permeability of soils amended with sewage sludge on short-rotation plantations in Europe. Pol J Soil Sci 48(2):131–137. https://doi.org/10.17951/pjss.2015.48.2.131

    Article  Google Scholar 

  31. Kaya A (2002) Evaluation of soil porosity using a low MHz range dielectric constant. Turk J Eng Environ Sci 26(4):301–308

    Google Scholar 

  32. Kozeny J (1927) Ueber kapillare Leitung des Wassers im Boden. Sitz Wien Akad 136(2a):271–306

    Google Scholar 

  33. Kuraz M, Mayer P, Havlíček V, Pech P, Pavlásek J (2013) Dual permeability variably saturated flow and contaminant transport modeling of a nuclear waste repository with capillary barrier protection. Appl Math Comput 219(13):7127–7138. https://doi.org/10.1016/j.amc.2011.08.109

    Article  MathSciNet  MATH  Google Scholar 

  34. Liang Z, Ioannidis MA, Chatzis I (2000) Permeability and electrical conductivity of porous media from 3D stochastic replicas of the microstructure. Chem Eng Sci 55(22):5247–5262. https://doi.org/10.1016/S00092509(00)00142-1

    Article  Google Scholar 

  35. Lipovetsky T, Zhuang L, Teixeira WG, Boyd A, Pontedeiro EM, Moriconi L, Alves JL, Couto P, van Genuchten MT (2020) HYPROP measurements of the unsaturated hydraulic properties of a carbonate rock sample. J Hydrol 591:125706

    Article  Google Scholar 

  36. Londra A (2010) Simultaneous determination of water retention curve and unsaturated hydraulic conductivity of substrates using a steady-state laboratory method. Hort Sci 45(7):1106–1112

    Google Scholar 

  37. Lu H, Liu J, Li Y, Dong Y (2015) Heat transport and water permeability during cracking of the landfill compacted clay cover. J Chem. https://doi.org/10.1155/2015/685871

    Article  Google Scholar 

  38. Mawer CM, Knight RJ, Kitanidis PK (2013) Relating relative hydraulic conductivity and electrical conductivity in the unsaturated zone. In: Presented at the AGU fall meeting, December, 2013, American Geophysical Union, vol 01. p L05

  39. McCarter WJ, Blewett J, Chrisp TM, Starrs G (2005) Electrical property measurements using a modified hydraulic oedometer. Can Geotech J 42(2):655–662

    Article  Google Scholar 

  40. Mechergui MM, Latifa Dhaouadi MA (2016) New approach for evaluate a sandy soil infiltration to calculate the permeability. In: Presented at the EGU general assembly conference, Vienna, Austria, April, 2016, vol 18. p 4891

  41. Millington RJ, Quirk JP (1961) Permeability of porous solids. Trans Faraday Soc 57:1200–1207. https://doi.org/10.1039/TF9615701200

    Article  Google Scholar 

  42. Moon HY, Kim HS, Choi DS (2006) Relationship between average pore diameter and chloride diffusivity in various concretes. Constr Build Mater 20:725–732

    Article  Google Scholar 

  43. Neyshabouri MR, Rahmati M, Doussan C, Behroozinezhad B (2013) Simplified estimation of unsaturated soil hydraulic conductivity using bulk electrical conductivity and particle size distribution. Soil Res 51(1):23–33. https://doi.org/10.1071/SR12158

    Article  Google Scholar 

  44. Niu Q, Fratta D, Wang YH (2015) The use of electrical conductivity measurements in the prediction of hydraulic conductivity of unsaturated soils. J Hydrol 522:475–487. https://doi.org/10.1016/j.jhydrol.2014.12.055

    Article  Google Scholar 

  45. Olivella S, Gens A (2000) Vapour transport in low permeability unsaturated soils with capillary effects. Transp Porous Media 40(2):219–241. https://doi.org/10.1023/A:1006749505937

    Article  Google Scholar 

  46. Rahmati M, Neyshaboury MR (2016) Soil air permeability modeling and its use for predicting unsaturated soil hydraulic conductivity. Soil Sci Soc Am J 80(6):1507–1513

    Article  Google Scholar 

  47. Rao BH, Bhat AM, Singh DN (2007) Application of impedance spectroscopy for modeling flow of AC in soils. Geomech Geoeng Int J 2(3):197–206. https://doi.org/10.1080/17486020701466778

    Article  Google Scholar 

  48. Rao BH, Singh DN (2010) Application of thermal flux for establishing soil–water characteristic curve of kaolin. Geomech Geoeng Int J 5(4):259–266. https://doi.org/10.1080/17486025.2010.483022

    Article  Google Scholar 

  49. Rezanezhad F, Quinton WL, Price JS, Elrick D, Elliot TR, Heck RJ (2009) Examining the effect of pore size distribution and shape on flow through unsaturated peat using computer tomography. Hydrol Earth Syst Sci 13(10):1–2. https://doi.org/10.5194/hess-13-1993-2009

    Article  Google Scholar 

  50. Rohini K, Singh DN (2004) Methodology for determination of electrical properties of soils. J Test Eval 32(1):1–7. https://doi.org/10.1520/JTE11884

    Article  Google Scholar 

  51. Samingan AS, Leong EC, Rahardjo H (2003) A flexible wall permeameter for measurements of water and air coefficients of permeability of residual soils. Can Geotech J 40(3):559–574. https://doi.org/10.1139/t03-015

    Article  Google Scholar 

  52. Shah P, Singh DN (2004) A simple methodology for determining electrical conductivity of soils. J ASTM Int 1(5):1–11. https://doi.org/10.1520/JAI12128

    Article  Google Scholar 

  53. Singh DN, Kuriyan SJ, Madhuri V (2001) Application of a geotechnical centrifuge for estimation of unsaturated soil hydraulic conductivity. J Test Eval 29(6):556–562. https://doi.org/10.1520/JTE12401J

    Article  Google Scholar 

  54. Singh DN, Sreedeep S (2005) Estimating unsaturated hydraulic conductivity of fine-grained soils using electrical resistivity measurements. J ASTM Int 2(1):1–11. https://doi.org/10.1520/JAI12823

    Article  Google Scholar 

  55. Singh DN, Thakur VK (2005) Rapid determination of swelling pressure of clay minerals. J Test Eval 33(4):1–7. https://doi.org/10.1520/JTE11866

    Article  Google Scholar 

  56. Sl SU, Singh DN, Baghini MS (2014) A critical review of soil moisture measurement. Measurement 54:92–105. https://doi.org/10.1016/j.measurement.2014.04.007

    Article  Google Scholar 

  57. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Sci Soc Am J 44:892–898

    Article  Google Scholar 

  58. Vanapalli SK, Sillers WS, Fredlund MD (1998) The meaning and relevance of residual water content to unsaturated soils. In: Proceedings of the 51st Canadian geotechnical conference, Edmonton, AB, Canada, 4–7 Oct. pp 101–108

  59. Washburn EW (1921) The dynamics of capillary flow. Phys Rev 17(3):273

    Article  Google Scholar 

  60. Wong JTF, Chen Z, Ng CWW, Wong MH (2016) Gas permeability of biochar-amended clay: potential alternative landfill final cover material. Environ Sci Pollut Res 23(8):7126–7131. https://doi.org/10.1007/s11356-015-4871-2

    Article  Google Scholar 

  61. Xu P, Yu B (2008) Developing a new form of permeability and Kozeny-Carman constant for homogeneous porous media by means of fractal geometry. Adv Water Resour 31(1):74–81. https://doi.org/10.1016/j.advwatres.2007.06.003

    Article  Google Scholar 

  62. Xu XB, Zhan TLT, Chen YM, Beaven RP (2014) Intrinsic and relative permeabilities of shredded municipal solid wastes from the Qizishan landfill, China. Can Geotech J 51(11):1243–1252. https://doi.org/10.1139/cgj-2013-0306

    Article  Google Scholar 

  63. Yang R, Xu Z, Chai J, Qin Y, Li Y (1995) Permeability test and slope stability analysis of municipal solid waste (MSW) in Jiangcungou Landfill, Shaanxi, China. J Air Waste Manag Assoc 66:7. https://doi.org/10.1080/10962247.2015.1093038

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to acknowledge the help and support rendered by Dr. Kannan Iyer, Dr. Bruna Lima Lopes and Dr. Siju K Swamy during the course of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. N. Singh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joseph, J., Rakshith, S., Singh, D.N. et al. MI-ECku: A novel methodology for estimating unsaturated hydraulic conductivity of porous media. Acta Geotech. 17, 3855–3865 (2022). https://doi.org/10.1007/s11440-022-01500-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-022-01500-0

Keywords

Navigation