Skip to main content
Log in

SPH-DEM coupling method based on GPU and its application to the landslide tsunami. Part I: method and validation

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Landslide-induced tsunami is a complex fluid–solid coupling process that plays a crucial role in the study of a disaster chain. To simulate the coupling behaviors between the fluid and solid, a graphics processing unit-based coupled smoothed particle hydrodynamics (SPH)-discrete element method (DEM) code is developed. A series of numerical tests, which are based on the laboratory test by Koshizuka et al. (Particle method for calculating splashing of incompressible viscous fluid, 1995) and Kleefsman et al. (J Comput Phys 206:363–393, 2005), are carried out to study the influence of the parameters, and to verify the accuracy of the developed SPH code. To ensure accurate results of the SPH simulation, the values for the diffusion term, particle resolution (1/25 characteristic length), and smoothing length (1.2 times of particle interval) are suggested. The ratio of the SPH particle size and the DEM particle’s diameter influences the accuracy of the coupling simulation between solid particles and water. For the coupling simulation of a single particle or a loose particle assembly (not contact each other) with fluid, this ratio should be smaller than 1/20; for a dense particle assembly, a ratio of smaller than 1/6 will be good.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Data availability

No data, models, or code were generated or used during the study.

References

  1. Adami S, Hu XY, Adams NA (2012) A generalized wall boundary condition for smoothed particle hydrodynamics. J Comput Phys 231:7057–7075. https://doi.org/10.1016/j.jcp.2012.05.005

    Article  MathSciNet  Google Scholar 

  2. Anderson JA, Lorenz CD, Travesset A (2008) General purpose molecular dynamics simulations fully implemented on graphics processing units. J Comput Phys 227:5342–5359. https://doi.org/10.1016/j.jcp.2008.01.047

    Article  MATH  Google Scholar 

  3. Antuono M, Colagrossi A, Marrone S (2012) Numerical diffusive terms in weakly-compressible SPH schemes. Comput Phys Commun 183:2570–2580. https://doi.org/10.1016/j.cpc.2012.07.006

    Article  MathSciNet  Google Scholar 

  4. Aristoff JM, Truscott TT, Techet AH, Bush JWM (2010) The water entry of decelerating spheres. Phys Fluids 22:1–8. https://doi.org/10.1063/1.3309454

    Article  MATH  Google Scholar 

  5. Bosa S, Petti M (2013) A numerical model of the wave that overtopped the Vajont Dam in 1963. Water Resour Manag 27:1763–1779. https://doi.org/10.1007/s11269-012-0162-6

    Article  Google Scholar 

  6. Burman BC, Cundall PA, Strack ODL (1980) A discrete numerical model for granular assemblies. Geotechnique 30:331–336. https://doi.org/10.1680/geot.1980.30.3.331

    Article  Google Scholar 

  7. Canelas RB, Crespo AJC, Domínguez JM et al (2016) SPH-DCDEM model for arbitrary geometries in free surface solid-fluid flows. Comput Phys Commun 202:131–140. https://doi.org/10.1016/j.cpc.2016.01.006

    Article  MathSciNet  Google Scholar 

  8. Cheng H, Luding S, Rivas N, Harting J, Magnanimo V (2019) Hydro-micromechanical modeling of wave propagation in saturated granular crystals. Int J Numer Anal Methods Geomech 43:1115–1139. https://doi.org/10.1002/nag.2920

    Article  Google Scholar 

  9. Crespo AJC, Domínguez JM, Rogers BD et al (2015) DualSPHysics: open-source parallel CFD solver based on smoothed particle hydrodynamics (SPH). Comput Phys Commun 187:204–216. https://doi.org/10.1016/j.cpc.2014.10.004

    Article  MATH  Google Scholar 

  10. Crosta GB, Imposimato S, Roddeman D (2016) Landslide spreading, impulse water waves and modelling of the Vajont rockslide. Rock Mech Rock Eng 49:2413–2436. https://doi.org/10.1007/s00603-015-0769-z

    Article  Google Scholar 

  11. Ding WT, Xu WJ (2018) Study on the multiphase fluid-solid interaction in granular materials based on an LBM-DEM coupled method. Powder Technol 335:301–314. https://doi.org/10.1016/j.powtec.2018.05.006

    Article  Google Scholar 

  12. Eliáš J (2014) Simulation of railway ballast using crushable polyhedral particles. Powder Technol 264:458–465. https://doi.org/10.1016/j.powtec.2014.05.052

    Article  Google Scholar 

  13. Fritz H, Hager W, Minor H-E (2001) Lituya Bay case: rockslide impact and wave run-up. Sci Tsunami Hazards 19:3–19

    Google Scholar 

  14. Fujisawa K, Murakami A, Nishimura S, Shuku T (2012) Relation between seepage force and velocity of sand particles during sand boiling. Geotech Eng 44:9–17

    Google Scholar 

  15. Gingold RA, Monaghan JJ (1977) Smoothed particle hydrodynamics: theory and application to non-spherical stars. Mon Not R Astron Soc 181:375–389. https://doi.org/10.1093/mnras/181.3.375

    Article  MATH  Google Scholar 

  16. Govender N, Rajamani RK, Kok S, Wilke DN (2015) Discrete element simulation of mill charge in 3D using the BLAZE-DEM GPU framework. Miner Eng 79:152–168. https://doi.org/10.1016/j.mineng.2015.05.010

    Article  Google Scholar 

  17. Govender N, Wilke DN, Kok S (2015) Blaze-DEMGPU: modular high performance DEM framework for the GPU architecture. SoftwareX 5:62–66. https://doi.org/10.1016/j.softx.2016.04.004

    Article  Google Scholar 

  18. Guo N, Zhao J (2016) 3D multiscale modeling of strain localization in granular media. Comput Geotech 80:360–372. https://doi.org/10.1016/j.compgeo.2016.01.020

    Article  Google Scholar 

  19. He Y, Bayly AE, Hassanpour A et al (2018) A GPU-based coupled SPH-DEM method for particle-fluid flow with free surfaces. Powder Technol 338:548–562. https://doi.org/10.1016/j.powtec.2018.07.043

    Article  Google Scholar 

  20. Hérault A, Bilotta G, Dalrymple RA (2010) SPH on GPU with CUDA. J Hydraul Res 48:74–79. https://doi.org/10.1080/00221686.2010.9641247

    Article  Google Scholar 

  21. Iverson RM (1997) The physics of debris flow. Rev Geophys 35:245–296

    Article  Google Scholar 

  22. Kermani E, Qiu T (2020) Simulation of quasi-static axisymmetric collapse of granular columns using smoothed particle hydrodynamics and discrete element methods. Acta Geotech 15:423–437. https://doi.org/10.1007/s11440-018-0707-9

    Article  Google Scholar 

  23. Kleefsman KMT, Fekken G, Veldman AEP et al (2005) A volume-of-fluid based simulation method for wave impact problems. J Comput Phys 206:363–393. https://doi.org/10.1016/j.jcp.2004.12.007

    Article  MathSciNet  MATH  Google Scholar 

  24. Kloss C, Goniva C, Hager A et al (2012) Models, algorithms and validation for opensource DEM and CFD-DEM. Prog Comput Fluid Dyn 12:140–152. https://doi.org/10.1504/PCFD.2012.047457

    Article  MathSciNet  Google Scholar 

  25. Koshizuka S, Oka Y, Tamako HA (1995) A particle method for calculating splashing of incompressible viscous fluid. Proc. International Conf. Mathematics and Computations, Reactor Physics and Environmental Analyses, Portland, 1514-1521. CONF-950420-TRN: 97:001160-0134

  26. Lee E-S, Violeau D, Issa R, Ploix S (2010) Application of weakly compressible and truly incompressible SPH to 3-D water collapse in waterworks. J Hydraul Res 48:50–60. https://doi.org/10.1080/00221686.2010.9641245

    Article  Google Scholar 

  27. Li T, Wu A, Feng Y et al (2018) Coupled DEM-LBM simulation of saturated flow velocity characteristics in column leaching. Miner Eng 128:36–44. https://doi.org/10.1016/j.mineng.2018.08.027

    Article  Google Scholar 

  28. Li X, Zhao J (2018) Dam-break of mixtures consisting of non-Newtonian liquids and granular particles. Powder Technol 338:493–505. https://doi.org/10.1016/j.powtec.2018.07.021

    Article  Google Scholar 

  29. Liao H, Wang Y, Li Y et al (2020) 3D fluid-solid coupling simulation for plate-type nuclear fuel assemblies under the irradiation condition. Prog Nucl Energy 126:103428. https://doi.org/10.1016/j.pnucene.2020.103428

    Article  Google Scholar 

  30. Liu GY, Xu WJ, Govender N, Wilke DN (2020) A cohesive fracture model for discrete element method based on polyhedral blocks. Powder Technol 359:190–204. https://doi.org/10.1016/j.powtec.2019.09.068

    Article  Google Scholar 

  31. Locat J, Lee HJ (2002) Submarine landslides: advances and challenges. Can Geotech J 39:193–212. https://doi.org/10.1139/t01-089

    Article  Google Scholar 

  32. Lubbe R, Xu WJ, Wilke DN et al (2020) Analysis of parallel spatial partitioning algorithms for GPU based DEM. Comput Geotech 125:103708. https://doi.org/10.1016/j.compgeo.2020.103708

    Article  Google Scholar 

  33. Marrone S, Antuono M, Colagrossi A et al (2011) δ-SPH model for simulating violent impact flows. Comput Methods Appl Mech Eng 200:1526–1542. https://doi.org/10.1016/j.cma.2010.12.016

    Article  MathSciNet  MATH  Google Scholar 

  34. Masson DG, Harbitz CB, Wynn RB et al (2006) Submarine landslides: Processes, triggers and hazard prediction. Philos Trans R Soc A Math Phys Eng Sci 364:2009–2039. https://doi.org/10.1098/rsta.2006.1810

    Article  MathSciNet  Google Scholar 

  35. Molteni D, Colagrossi A (2009) A simple procedure to improve the pressure evaluation in hydrodynamic context using the SPH. Comput Phys Commun 180:861–872. https://doi.org/10.1016/j.cpc.2008.12.004

    Article  MathSciNet  MATH  Google Scholar 

  36. Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574. https://doi.org/10.1146/annurev.aa.30.090192.002551

    Article  Google Scholar 

  37. Monaghan JJ (1994) Simulating free surface flows with SPH. J Comput Phys 110:399–406. https://doi.org/10.1006/jcph.1994.1034

    Article  MATH  Google Scholar 

  38. Natsui S, Sawada A, Terui K et al (2018) DEM-SPH study of molten slag trickle flow in coke bed. Chem Eng Sci 175:25–39. https://doi.org/10.1016/j.ces.2017.09.031

    Article  Google Scholar 

  39. Peng C, Zhan L, Wu W, Zhang B (2021) A fully resolved SPH-DEM method for heterogeneous suspensions with arbitrary particle shape. Powder Technology, Elsevier B.V vol 387(April): pp 509–526.

  40. Ren B, Jin Z, Gao R et al (2014) SPH-DEM modeling of the hydraulic stability of 2D blocks on a slope. J Waterw Port Coast Ocean Eng 140:04014022. https://doi.org/10.1061/(asce)ww.1943-5460.0000247

    Article  Google Scholar 

  41. Robinson M, Ramaioli M, Luding S (2014) Fluid-particle flow simulations using two-way-coupled mesoscale SPH-DEM and validation. Int J Multiph Flow 59:121–134. https://doi.org/10.1016/j.ijmultiphaseflow.2013.11.003

    Article  Google Scholar 

  42. Saadlaoui Y, Delache A, Feulvarch E et al (2020) New strategy of solid/fluid coupling during numerical simulation of thermo-mechanical processes. J Fluids Struct 99:103161. https://doi.org/10.1016/j.jfluidstructs.2020.103161

    Article  Google Scholar 

  43. Sarfaraz M, Pak A (2017) An integrated SPH-polyhedral DEM algorithm to investigate hydraulic stability of rock and concrete blocks: application to cubic armours in breakwaters. Eng Anal Bound Elem 84:1–18. https://doi.org/10.1016/j.enganabound.2017.08.002

    Article  MathSciNet  MATH  Google Scholar 

  44. Shen J, Wheeler C, Ilic D, Chen J (2019) Application of open source FEM and DEM simulations for dynamic belt deflection modelling. Powder Technol 357:171–185. https://doi.org/10.1016/j.powtec.2019.08.068

    Article  Google Scholar 

  45. Sinnott MD, Cleary PW, Morrison RD (2017) Combined DEM and SPH simulation of overflow ball mill discharge and trommel flow. Miner Eng 108:93–108. https://doi.org/10.1016/j.mineng.2017.01.016

    Article  Google Scholar 

  46. Tabib MV, Roy SA, Joshi JB (2008) CFD simulation of bubble column—An analysis of interphase forces and turbulence models. Chem Eng J 139:589–614. https://doi.org/10.1016/j.cej.2007.09.015

    Article  Google Scholar 

  47. Tan H, Chen S (2017) A hybrid DEM-SPH model for deformable landslide and its generated surge waves. Adv Water Resour 108:256–276. https://doi.org/10.1016/j.advwatres.2017.07.023

    Article  Google Scholar 

  48. Wang J, Wang S, Su A, Xiang W, Xiong CR, Blum P (2021) Simulating landslide-induced tsunamis in the Yangtze River at the three gorges in China. Acta Geotech 16:2487–2503

    Article  Google Scholar 

  49. Wendland H (1995) Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv Comput Math 4:389–396. https://doi.org/10.1007/BF02123482

    Article  MathSciNet  MATH  Google Scholar 

  50. Wu K, Yang D, Wright N (2016) A coupled SPH-DEM model for fluid-structure interaction problems with free-surface flow and structural failure. Comput Struct 177:141–161. https://doi.org/10.1016/j.compstruc.2016.08.012

    Article  Google Scholar 

  51. Xu WJ, Dong XY (2021) Simulation and verification of landslide tsunamis using a 3D SPH-DEM coupling method. Comput Geotech 129:103803. https://doi.org/10.1016/j.compgeo.2020.103803

    Article  Google Scholar 

  52. Xu WJ, Dong XY, Ding WT (2019) Analysis of fluid-particle interaction in granular materials using coupled SPH-DEM method. Powder Technol 353:459–472. https://doi.org/10.1016/j.powtec.2019.05.052

    Article  Google Scholar 

  53. Xu WJ, Yao ZG, Luo YT, Dong XY (2020) Study on landslide-induced wave disasters using a 3D coupled SPH-DEM method. Bull Eng Geol Environ 79:467–483. https://doi.org/10.1007/s10064-019-01558-3

    Article  Google Scholar 

  54. Zhan L, Peng C, Zhang B, Wu W (2019) A stabilized TL–WC SPH approach with GPU acceleration for three-dimensional fluid–structure interaction. J. Fluids Struct, Elsevier Inc. vol 86: pp 329–353

  55. Zhan L, Peng C, Zhang B, Wu W (2021) A surface mesh represented discrete element method (SMR-DEM) for particles of arbitrary shape. Powder Technol, Elsevier B.V. vol 377: pp 760–779

  56. Zhang S, Yin Y, Hu X et al (2020) Dynamics and emplacement mechanisms of the successive baige landslides on the upper reaches of the Jinsha River China. Eng Geol 278:105819. https://doi.org/10.1016/j.enggeo.2020.105819

    Article  Google Scholar 

  57. Zheng Z, Zang M, Chen S, Zeng H (2018) A GPU-based DEM-FEM computational framework for tire-sand interaction simulations. Comput Struct 209:74–92. https://doi.org/10.1016/j.compstruc.2018.08.011

    Article  Google Scholar 

  58. Zhong W, Yu A, Liu X et al (2016) DEM/CFD-DEM modelling of non-spherical particulate systems: theoretical developments and applications. Powder Technol 302:108–152. https://doi.org/10.1016/j.powtec.2016.07.010

    Article  Google Scholar 

  59. Zhou, Q., Xu, W., and Liu, G. (2021) Computers and geotechnics a contact detection algorithm for triangle boundary in GPU-based DEM and its application in a large-scale landslide. Comput Geotech, Elsevier Ltd vol 138(April): pp 104371.

  60. Zhu C, Peng C, Wu, (2021) W. Applications of micropolar SPH in geomechanics. Acta Geotech 16:2355–2369. https://doi.org/10.1007/s11440-021-01177-x

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the project of “Natural Science Foundation of China, China (51879142, 52079067)” and “Research Fund Program of the State Key Laboratory of Hydroscience and Engineering (2020-KY-04).”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wen-Jie Xu.

Ethics declarations

Conflict of interest

The authors declared that they have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, Q., Xu, WJ. & Dong, XY. SPH-DEM coupling method based on GPU and its application to the landslide tsunami. Part I: method and validation. Acta Geotech. 17, 2101–2119 (2022). https://doi.org/10.1007/s11440-021-01388-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01388-2

Keywords

Navigation