Skip to main content
Log in

The coefficient of earth pressure at rest in hydrate-bearing sediments

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The presence of hydrate alters the stress distribution in sediments. Current analyses of stress state and stress path in hydrate deposits are simplistic, and no direct measurements are available. This study presents an experimental and theoretical investigation of the coefficient of earth pressure at rest K0 in tetrahydrofuran hydrate-bearing sands. Hydrate crystals creep, and thus, measured K0 values manifest time-dependent behavior. The coefficient K0 in hydrate-bearing sediments is mainly governed by hydrate cementation at low stress and by the soil particle skeleton at high stress. Estimations of K0 based on the Poissonˈs ratio from rock physics models fail to recognize plastic deformation and decementation due to loading. Particle fabric at the maximum stress in history can be partially preserved together with certain stress locked within the sediments that can significantly increase K0 values beyond usually assumed 0.5. Therefore, high lateral stress transfer is expected in the hydrate reservoir after gas production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Alpan I (1967) The empirical evaluation of the coefficient K0 and K0R. Soils Found 7(1):31–40

    Article  Google Scholar 

  2. Andrawes KZ, El-Sohby MA (1973) Factors affecting coefficient of earth pressure Ko. J Geotech Geoenviron Eng 99(7):527–539

    Google Scholar 

  3. Berryman JG (1980) Long-wavelength propagation in composite elastic media I Spherical inclusions. J Acoust Soc Am 68(6):1809–1819

    Article  MATH  Google Scholar 

  4. Birchwood R, Noeth S (2012) Horizontal stress contrast in the shallow marine sediments of the Gulf of Mexico sites Walker Ridge 313 and Atwater Valley 13 and 14–Geological observations, effects on wellbore stability, and implications for drilling. Marine Pet Geol 34(1):186–208

    Article  Google Scholar 

  5. Birchwood R, Noeth S, Hooyman P, Winters W, and Jones E (2005) Wellbore stability model for marine sediments containing gas hydrates, paper presented at Proceedings, American Association of Drilling Engineers National Conference and Exhibition.

  6. Brooker EW, Ireland HO (1965) Earth pressures at rest related to stress history. Can Geotech J 2(1):1–15

    Article  Google Scholar 

  7. Choi JH, Dai S, Cha JH, Seol Y (2014) Laboratory formation of noncementing hydrates in sandy sediments. Geochem Geophys Geosyst 15(4):1648–1656

    Article  Google Scholar 

  8. Chu J, Gan C (2004) Effect of void ratio on K 0 of loose sand. Geotechnique 54(4):285–288

    Article  Google Scholar 

  9. Collett TS, Johnson A, Knapp CC, Boswell R (2010) Natural gas hydrates: energy resource potential and associated geologic hazards, AAPG Memoir 89, AAPG.

  10. Coop M, Atkinson J (1993) The mechanics of cemented carbonate sands. Geotechnique 43(1):53–67

    Article  Google Scholar 

  11. Dai S, Kim J, Xu Y, Waite WF, Jang J, Yoneda J, Collett TS, Kumar P (2019) Permeability anisotropy and relative permeability in sediments from the National Gas Hydrate Program Expedition 02, offshore India. Mar Pet Geol 108:705–713

    Article  Google Scholar 

  12. Durham WB, Kirby SH, Stern LA, Zhang W (2003) The strength and rheology of methane clathrate hydrate. J Geophys Res 108(B4):2182. https://doi.org/10.1029/2002jb001872

    Article  Google Scholar 

  13. Dvorkin J, Helgerud MB, Waite WF, Kirby SH, Nur A (2000) Introduction to physical properties and elasticity models. In Michael D. Max (ed) Natural Gas Hydrate, edited, Springer, pp 245–260

  14. Freij-Ayoub R, Tan C, Clennell B, Tohidi B, Yang J (2007) A wellbore stability model for hydrate bearing sediments. J Pet Sci Eng 57(1–2):209–220

    Article  Google Scholar 

  15. Fujii T, Suzuki K, Takayama T, Tamaki M, Komatsu Y, Konno Y, Yoneda J, Yamamoto K, Nagao J (2015) Geological setting and characterization of a methane hydrate reservoir distributed at the first offshore production test site on the Daini-Atsumi Knoll in the eastern Nankai Trough Japan. Marine Pet Geol 66:310–322

    Article  Google Scholar 

  16. Guimaraes M, Valdes J, Palomino A, Santamarina J (2007) Aggregate production: fines generation during rock crushing. Int J Miner Process 81(4):237–247

    Article  Google Scholar 

  17. Hagerty M, Hite D, Ullrich C, Hagerty D (1993) One-dimensional high-pressure compression of granular media. J Geotech Eng 119(1):1–18

    Article  Google Scholar 

  18. Hyodo M, Nakata Y, Yoshimoto N, Ebinuma T (2005) Basic research on the mechanical behavior of methane hydrate-sediments mixture. Soils Found 45(1):75–85

    Google Scholar 

  19. Hyodo M, Wu Y, Aramaki N, Nakata Y (2016) Undrained monotonic and cyclic shear response and particle crushing of silica sand at low and high pressures. Can Geotech J 54(2):207–218

    Article  Google Scholar 

  20. Hyodo M, Yoneda J, Yoshimoto N, Nakata Y (2013) Mechanical and dissociation properties of methane hydrate-bearing sand in deep seabed. Soils Found 53(2):299–314

    Article  Google Scholar 

  21. Jaky J (1948), Pressure in silos, paper presented at Proceedings of the 2nd international conference on soil mechanics and foundation engineering.

  22. Kim A-R, Kim J-T, Cho G-C, Lee JY (2018) Methane production from marine gas hydrate deposits in Korea: Thermal-hydraulic-mechanical simulation on production wellbore stability. J Geophys Res Solid Earth 123(11):9555–9569

    Article  Google Scholar 

  23. Kim J, Zhang Y, Seol Y, Dai S (2020) Particle crushing in hydrate-bearing sands. Geomech Energy Environ 23:100133

    Article  Google Scholar 

  24. Kumar P, Collett T, Shukla K, Yadav U, Lall M, Vishwanath K (2019) India national gas hydrate program expedition-02: operational and technical summary. Mar Pet Geol 108:3–38

    Article  Google Scholar 

  25. Kvenvolden KA (1999) Potential effects of gas hydrate on human welfare. Proc Natl Acad Sci 96(7):3420–3426

    Article  Google Scholar 

  26. Lade PV, Yamamuro JA, Bopp PA (1996) Significance of particle crushing in granular materials. J Geotech Eng 122(4):309–316

    Article  Google Scholar 

  27. Lee J, Francisca FM, Santamarina JC, and Ruppel C (2010), Parametric study of the physical properties of hydrate‐bearing sand, silt, and clay sediments: 2. Small‐strain mechanical properties. J Geophys Res Solid Earth (1978–2012), 115(B11).

  28. Lee J, Lee D, Park D, Kyung D, Kim G, Kim I (2016) Effect of freezing and thawing on K0 geostatic stress state for granular materials. Granular Matter 18(3):69

    Article  Google Scholar 

  29. Lee JY, Santamarina JC, and Ruppel C (2010), Volume change associated with formation and dissociation of hydrate in sediment. Geochem Geophys Geosyst 11(Q03007):1–13

  30. Lee JY, Santamarina JC, Ruppel C (2008) Mechanical and electromagnetic properties of northern Gulf of Mexico sediments with and without THF hydrates. Mar Pet Geol 25(9):884–895

    Article  Google Scholar 

  31. Lee JY, Yun TS, Santamarina JC, Ruppel C (2007) Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochem Geophys Geosyst 8(6):Q06003. https://doi.org/10.1029/2006gc001531

    Article  Google Scholar 

  32. Lee JY, Yun TS, Santamarina JC, Ruppel C (2007) Observations related to tetrahydrofuran and methane hydrates for laboratory studies of hydrate-bearing sediments. Geochem Geophys Geosyst. https://doi.org/10.1029/2006gc001531

    Article  Google Scholar 

  33. Lei L, Gai X, Seol Y (2020) Load-bearing characteristic of methane hydrate within coarse-grained sediments–Insights from isotropic consolidation. Marine Pet Geol 121:104571

    Article  Google Scholar 

  34. Lei L, Liu Z, Seol Y, Boswell R, Dai S (2019) An investigation of hydrate formation in unsaturated sediments using X-ray computed tomography. J Geophys Res Solid Earth 124(4):3335–3349

    Article  Google Scholar 

  35. Lei L, Seol Y, Choi J-H, Kneafsey TJ (2019) Pore habit of methane hydrate and its evolution in sediment matrix–Laboratory visualization with phase-contrast micro-CT. Mar Pet Geol 104:451–467

    Article  Google Scholar 

  36. Leroueil S, Vaughan P (2009) The general and congruent effects of structure in natural soils and weak rocks. In: Vaughan PR (ed) Selected papers on geotechnical engineering. Thomas Telford Publishing, London, pp 235–256

    Google Scholar 

  37. Li Y, Liu W, Song Y, Yang M, Zhao J (2016) Creep behaviors of methane hydrate coexisting with ice. J Nat Gas Sci Eng 33:347–354

    Article  Google Scholar 

  38. Liu Z, Kim J, Lei L, Ning F, Dai S (2019) Tetrahydrofuran hydrate in clayey sediments—laboratory formation, morphology, and wave characterization. J Geophys Res Solid Earth 124(4):3307–3319

    Article  Google Scholar 

  39. Mahabadi N, Dai S, Seol Y, Jang J (2019) Impact of hydrate saturation on water permeability in hydrate-bearing sediments. J Pet Sci Eng 174:696–703

    Article  Google Scholar 

  40. Mahabadi N, Zheng X, Jang J (2016) The effect of hydrate saturation on water retention curves in hydrate-bearing sediments. Geophys Res Lett 43(9):4279–4287

    Article  Google Scholar 

  41. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: Tools for seismic analysis of porous media. Cambridge University Press

    Book  Google Scholar 

  42. Mayne PW, Kulhawy FH (1982) Ko- OCR relationships in soil. J Soil Mech Found Division 108(6):851–872

    Google Scholar 

  43. McConnell DR, Zhang Z, Boswell R (2012) Review of progress in evaluating gas hydrate drilling hazards. Mar Pet Geol 34(1):209–223

    Article  Google Scholar 

  44. Nagano Y, Lin W, Yamamoto K (2015) In-situ stress analysis using the anelastic strain recovery (ASR) method at the first offshore gas production test site in the eastern Nankai Trough Japan. Marine Pet Geol 66:418–424

    Article  Google Scholar 

  45. Northcutt S, Wijewickreme D (2013) Effect of particle fabric on the coefficient of lateral earth pressure observed during one-dimensional compression of sand. Can Geotech J 50(5):457–466

    Article  Google Scholar 

  46. Okochi Y, Tatsuoka F (1984) Some factors affecting K0-values of sand measured in triaxial cell. Soils Found 24(3):52–68

    Article  Google Scholar 

  47. Pearson C, Murphy J, Hermes R (1986) Acoustic and resistivity measurements on rock samples containing tetrahydrofuran hydrates: laboratory analogues to natural gas hydrate deposits. J Geophys Res Solid Earth 91(B14):14132–14138

    Article  Google Scholar 

  48. Priest JA, Rees EVL, Clayton CRI (2009) Influence of gas hydrate morphology on the seismic velocities of sands. J Geophys Res 114(B11):B11205. https://doi.org/10.1029/2009jb006284

    Article  Google Scholar 

  49. Rueff RM, Sloan ED (1985) Effect of granular sediment on some thermal properties of tetrahydrofuran hydrate. Ind Eng Chem Process Des Dev 24(3):882–885

    Article  Google Scholar 

  50. Sánchez M, Santamarina C, Teymouri M, Gai X (2018) Coupled numerical modeling of gas hydrate-bearing sediments: from laboratory to field-scale analyses. J Geophys Res Solid Earth 123(12):10326–310348

    Article  Google Scholar 

  51. Santamarina JC, Dai S, Terzariol M, Jang J, Waite WF, Winters WJ, Nagao J, Yoneda J, Konno Y, Fujii T (2015) Hydro-bio-geomechanical properties of hydrate-bearing sediments from Nankai Trough. Mar Pet Geol 66:434–450

    Article  Google Scholar 

  52. Shin H, Santamarina JC (2009) Mineral dissolution and the evolution of k 0. J Geotech Geoenviron Eng 135(8):1141–1147

    Article  Google Scholar 

  53. Shin H, Santamarina JC (2017) Sediment–well interaction during depressurization. Acta Geotech 12(4):883–895

    Article  Google Scholar 

  54. Strauch B, Schicks JM, Luzi-Helbing M, Naumann R, Herbst M (2018) The difference between aspired and acquired hydrate volumes–A laboratory study of THF hydrate formation in dependence on initial THF: H2O ratios. J Chem Thermodyn 117:193–204

    Article  Google Scholar 

  55. Sun J, Ning F, Lei H, Gai X, Sánchez M, Lu J, Li Y, Liu L, Liu C, Wu N (2018) Wellbore stability analysis during drilling through marine gas hydrate-bearing sediments in Shenhu area: a case study. J Petrol Sci Eng 170:345–367

    Article  Google Scholar 

  56. Sun X, Wang L, Luo H, Song Y, Li Y (2019) Numerical modeling for the mechanical behavior of marine gas hydrate-bearing sediments during hydrate production by depressurization. J Petrol Sci Eng 177:971–982

    Article  Google Scholar 

  57. Terzariol M, Park J, Castro GM, Santamarina JC (2020) Methane hydrate-bearing sediments: Pore habit and implications. Mar Pet Geol 116:104302

    Article  Google Scholar 

  58. Waite WF, Santamarina JC, Cortes DD, Dugan B, Espinoza DN, Germaine J, Jang J, Jung JW, Kneafsey TJ, Shin H and Soga K (2009) Physical properties of hydrate‐bearing sediments. Reviews of geophysics 47(RG4003):1–8

  59. Wanatowski D, Chu J (2007) K 0 of sand measured by a plane-strain apparatus. Can Geotech J 44(8):1006–1012

    Article  Google Scholar 

  60. Yamamoto K (2005) Application of wireline conveyed through casing formation tester to methane hydrate research in Japan, paper presented at Proc. 11th Formation Evaluation Symp. Japan, Chiba, Japan, Oct. 5–6, 2005.

  61. Yamamuro JA, Bopp PA, Lade PV (1996) One-dimensional compression of sands at high pressures. J Geotech Eng 122(2):147–154

    Article  Google Scholar 

  62. Yang L, Falenty A, Chaouachi M, Haberthür D, Kuhs WF (2016) Synchrotron X-ray computed microtomography study on gas hydrate decomposition in a sedimentary matrix. Geochem Geophys Geosyst 17(9):3717–3732

    Article  Google Scholar 

  63. Yao X, Qi J, Yu F (2014) Study on lateral earth pressure coefficient at rest for frozen soils. J Offshore Mech Arct Eng 136(1):011301

    Article  Google Scholar 

  64. Yoneda J, Masui A, Konno Y, Jin Y, Egawa K, Kida M, Ito T, Nagao J, Tenma N (2015) Mechanical properties of hydrate-bearing turbidite reservoir in the first gas production test site of the Eastern Nankai Trough. Marine Pet Geol 66:471–486

    Article  Google Scholar 

  65. Yoneda J, Oshima M, Kida M, Kato A, Konno Y, Jin Y, Jang J, Waite WF, Kumar P, Tenma N (2019) Pressure core based onshore laboratory analysis on mechanical properties of hydrate-bearing sediments recovered during India’s National Gas Hydrate Program Expedition (NGHP) 02. Mar Pet Geol 108:482–501

    Article  Google Scholar 

  66. Yun TS, Francisca FM, Santamarina JC, Ruppel C (2005) Compressional and shear wave velocities in uncemented sediment containing gas hydrate. Geophys Res Lett, 32(L10609):1–13

  67. Yun TS, Evans TM (2011) Evolution of at-rest lateral stress for cemented sands: experimental and numerical investigation. Granular Matter 13(5):671

    Article  Google Scholar 

  68. Yun TS, Santamarina JC (2005) Decementation, softening, and collapse: changes in small-strain shear stiffness in k 0 loading. J Geotech Geoenviron Eng 131(3):350–358

    Article  Google Scholar 

  69. Yun TS, Santamarina JC, Ruppel C (2007), Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J Geophys Res Solid Earth 112(B04106):1–5

  70. Yun TS, Santamarina JC, Ruppel C (2007) Mechanical properties of sand, silt, and clay containing tetrahydrofuran hydrate. J Geophys Res 112(B4):B04106. https://doi.org/10.1029/2006jb004484

    Article  Google Scholar 

  71. Zhou M, Soga K, Yamamoto K (2018) Upscaled anisotropic methane hydrate critical state model for turbidite hydrate-bearing sediments at East Nankai Trough. J Geophys Res Solid Earth 123(8):6277–6298

    Google Scholar 

  72. Zhu F, Clark JI, Paulin MJ (1995) Factors affecting at-rest lateral stress in artificially cemented sands. Can Geotech J 32(2):195–203

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge financial support from the US DOE/NETL gas hydrate research program and the Engineering Research Center Program of the National Science Foundation (EEC‐1,449,501). All data to generate the figures in this manuscript can be found at https://figshare.com/s/1859814d21d7fee53269.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheng Dai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, J., Seol, Y. & Dai, S. The coefficient of earth pressure at rest in hydrate-bearing sediments. Acta Geotech. 16, 2729–2739 (2021). https://doi.org/10.1007/s11440-021-01174-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01174-0

Keywords

Navigation