Skip to main content
Log in

Comparative investigation of shear-band evolution using discrete and continuum-based particle methods

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Both discrete and continuous computational methods are commonly used for model-based simulation of failure evolution. Molecular dynamics (MD) and the finite element method (FEM) are representative discrete particle and continuous methods, respectively. The Material Point Method (MPM) is a continuum-based particle method that is formulated based on the weak form of the governing equations in a way similar to the FEM. Here, we report a comparative study of shear-band evolution as predicted by all-atom MD, coarse-grain MD (in which several atoms are subsumed into a single effective particle), and MPM. Overall features of the responses at different scales are summarized, along with a discussion of similarities and differences among the results obtained via the three spatial discretization approaches. This work could serve as a benchmark example for developing multiscale geomechanics under extreme loading scenarios such as earth penetration and underground explosions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Allen MP, Tildesley DJ (2017) Computer simulation of liquids. Oxford University Press, Oxford

    Book  Google Scholar 

  2. Ambati R, Pan X, Yuan H, Zhang X (2012) Application of material point methods for cutting process simulations. Comput Mater Sci 57:102–110. https://doi.org/10.1016/j.commatsci.2011.06.018

    Article  Google Scholar 

  3. Andersen S, Andersen L (2010) Modelling of landslides with the material-point method. Comput Geosci 14(1):137–147. https://doi.org/10.1007/s10596-009-9137-y

    Article  MATH  Google Scholar 

  4. Atkins P, De Paula J, Keeler J (2018) Atkins’ physical chemistry. Oxford University Press, Oxford

    Google Scholar 

  5. Bardenhagen SG, Kober EM (2004) The generalized interpolation material point method. Comput Model Eng Sci 5(6):477–496. https://doi.org/10.3970/cmes.2004.005.477

    Article  Google Scholar 

  6. Bathe KJ, Ramm E, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Meth Eng 9(2):353–386

    Article  Google Scholar 

  7. Bazant ZP, Chen E-P (1997) Scaling of structural failure. Appl Mech Rev 50(10):593–627. https://doi.org/10.1115/1.3101672

    Article  Google Scholar 

  8. Cao AJ, Cheng YQ, Ma E (2009) Structural processes that initiate shear localization in metallic glass. Acta Mater 57(17):5146–5155. https://doi.org/10.1016/j.actamat.2009.07.016

    Article  Google Scholar 

  9. Chen Z, Deng M, Chen EP (2001) On the rate-dependent transition from tensile damage to discrete fracture in dynamic brittle failure. Theoret Appl Fract Mech 35(3):229–235. https://doi.org/10.1016/S0167-8442(01)00046-5

    Article  Google Scholar 

  10. Chen Z, Fang HE (2001) A study on the link between coupled plasticity/damage and decohesion for multi-scale modeling. J Mech Eng Sci-Proc Inst Mech Eng Part C 215:259–263. https://doi.org/10.1243/0954406011520698

    Article  Google Scholar 

  11. Chen Z, Jiang S, Gan Y, Oloriegbe Y, Sewell TD, Thompson DL (2012) Size effects on the impact response of copper nanobeams. J Appl Phys 111(11):113512. https://doi.org/10.1063/1.4723834

    Article  Google Scholar 

  12. Chen Z, Schreyer H (1994) On nonlocal damage models for interface problems. Int J Solids Struct 31(9):1241–1261. https://doi.org/10.1016/0020-7683(94)90119-8

    Article  MATH  Google Scholar 

  13. Chen Z, Schreyer HL (1995) Formulation and computational aspects of plasticity and damage models with application to quasi-brittle materials. Technical Report, Sandia National Labs, USA

    Book  Google Scholar 

  14. Desai CS, Siriwardane HJ (1984) Constitutive laws for engineering materials with emphasis on geologic materials. Prentice-Hall

  15. EngineeringToolBox (2003) Young's Modulus - Tensile and Yield Strength for common Materials. [online]. https://www.engineeringtoolbox.com/young-modulus-d_417.html. Accessed 20 May 2020

  16. EngineeringToolBox (2005) Metals and Alloys - Melting Temperatures. [online]. https://www.engineeringtoolbox.com/melting-temperature-metals-d_860.html. Accessed 20 May 2020

  17. Eringen AC (2002) Nonlocal continuum field theories. Springer, New York

    MATH  Google Scholar 

  18. Frenkel D, Smit B (2001) Understanding molecular simulation: from algorithms to applications. Elsevier, Amsterdam

    MATH  Google Scholar 

  19. Gan Y, Jiang S, Su Y-C, Sewell TD, Chen Z (2016) A Coarse-Grained model for fcc metals based on hierarchical coupling between molecular dynamics and isothermal dissipative particle dynamics. Chinese J Comput Mech 33:621–628

    Google Scholar 

  20. Gao Y, Wang H, Zhao J, Sun C, Wang F (2011) Anisotropic and temperature effects on mechanical properties of copper nanowires under tensile loading. Comput Mater Sci 50(10):3032–3037. https://doi.org/10.1016/j.commatsci.2011.05.023

    Article  Google Scholar 

  21. Gao Y, Wang F, Zhu T, Zhao J (2010) Investigation on the mechanical behaviors of copper nanowires under torsion. Comput Mater Sci 49(4):826–830. https://doi.org/10.1016/j.commatsci.2010.06.031

    Article  Google Scholar 

  22. Gourvenec S, Randolph M, Kingsnorth O (2006) Undrained bearing capacity of square and rectangular footings. Int J Geomech 6(3):147–157

    Article  Google Scholar 

  23. Humphreys FJ, Hatherly M (2012) Recrystallization and related annealing phenomena. Elsevier, Amsterdam

    Google Scholar 

  24. Jiang S, Chen Z, Gan Y, Oloriegbe SY, Sewell TD, Thompson DL (2012) Size effects on the wave propagation and deformation pattern in copper nanobars under symmetric longitudinal impact loading. J Phys D Appl Phys 45(47):475305

    Article  Google Scholar 

  25. Jiang S, Zhang H, Zheng Y, Chen Z (2009) Atomistic study of the mechanical response of copper nanowires under torsion. J Phys D Appl Phys 42(13):135408. https://doi.org/10.1088/0022-3727/42/13/135408

    Article  Google Scholar 

  26. Jiang S, Zhang H, Zheng Y, Chen Z (2010) Loading path effect on the mechanical behaviour and fivefold twinning of copper nanowires. J Phys D Appl Phys 43(33):335402. https://doi.org/10.1088/0022-3727/43/33/335402

    Article  Google Scholar 

  27. Johnson RA (1988) Relationship between defect energies and embedded-atom-method parameters. Phys Rev B Condens Matter 37(11):6121–6125. https://doi.org/10.1103/physrevb.37.6121

    Article  Google Scholar 

  28. Johnson RA (1988) Analytic nearest-neighbor model for fcc metals. Phys Rev B Condens Matter 37(8):3924–3931. https://doi.org/10.1103/physrevb.37.3924

    Article  Google Scholar 

  29. Johnson RA (1989) Alloy models with the embedded-atom method. Phys Rev B Condens Matter 39(17):12554–12559. https://doi.org/10.1103/physrevb.39.12554

    Article  Google Scholar 

  30. Koh SJA, Lee HP, Lu C, Cheng QH (2005) Molecular dynamics simulation of a solid platinum nanowire under uniaxial tensile strain: Temperature and strain-rate effects. Phys Rev B 72(8):085414. https://doi.org/10.1103/PhysRevB.72.085414

    Article  Google Scholar 

  31. Kroonblawd MP, Sewell TD, Maillet J-B (2016) Characteristics of energy exchange between inter-and intramolecular degrees of freedom in crystalline 1, 3, 5-triamino-2, 4, 6-trinitrobenzene (TATB) with implications for coarse-grained simulations of shock waves in polyatomic molecular crystals. J Chem Phys 144(6):064501. https://doi.org/10.1063/1.4941332

    Article  Google Scholar 

  32. Lade PV (1988) Effects of voids and volume changes on the behaviour of frictional materials. Int J Numer Anal Meth Geomech 12(4):351–370

    Article  Google Scholar 

  33. Lai WM, Rubin DH, Krempl E, Rubin D (2009) Introduction to continuum mechanics. Butterworth-Heinemann, Oxford

    MATH  Google Scholar 

  34. Liang W, Zhou M (2004) Response of copper nanowires in dynamic tensile deformation. Proc Inst Mech Eng, Part C: J Mech Eng Sci 218(6):599–606. https://doi.org/10.1243/095440604774202231

    Article  Google Scholar 

  35. Lynch K, Thompson A, Strachan A (2008) Coarse grain modeling of spall failure in molecular crystals: role of intra-molecular degrees of freedom. Modell Simul Mater Sci Eng 17(1):015007

    Article  Google Scholar 

  36. McDowell MT, Leach AM, Gall K (2008) Bending and tensile deformation of metallic nanowires. Model Simul Mater Sci Eng 16(4):045003. https://doi.org/10.1088/0965-0393/16/4/045003

    Article  Google Scholar 

  37. Mishin Y, Mehl M, Papaconstantopoulos D, Voter A, Kress J (2001) Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys Rev B 63(22):224106. https://doi.org/10.1103/PhysRevB.63.224106

    Article  Google Scholar 

  38. Nayar A (1997) The metals databook. McGraw-Hill Companies, New York

    Google Scholar 

  39. Parks ML, Lehoucq RB, Plimpton SJ, Silling SA (2008) Implementing peridynamics within a molecular dynamics code. Comput Phys Commun 179(11):777–783. https://doi.org/10.1016/j.cpc.2008.06.011

    Article  MATH  Google Scholar 

  40. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. https://doi.org/10.2172/10176421

    Article  MATH  Google Scholar 

  41. Putar F, Sorić J, Lesičar T, Tonković Z (2019) A multiscale method for damage analysis of quasi-brittle heterogeneous materials. CMES-Comput Model Eng Sci 120(1):123–156

    Google Scholar 

  42. Reddy JN (1993) An introduction to the finite element method. McGraw-Hill, New York

    Google Scholar 

  43. Reddy JN (2017) Energy principles and variational methods in applied mechanics. Wiley, NY

    Google Scholar 

  44. Schreyer HL, Chen Z (1986) One-dimensional softening with localization. J Appl Mech 53(4):791–797. https://doi.org/10.1115/1.3171860

    Article  Google Scholar 

  45. Shimizu F, Ogata S, Li J (2007) Theory of Shear Banding in Metallic Glasses and Molecular Dynamics Calculations. Mater Trans 48(11):2923–2927. https://doi.org/10.2320/matertrans.MJ200769

    Article  Google Scholar 

  46. Strachan A, Holian BL (2005) Energy exchange between mesoparticles and their internal degrees of freedom. Phys Rev Lett 94(1):014301

    Article  Google Scholar 

  47. Stukowski A (2010) Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool. Modell Simul Mater Sci Eng 18(1):015012. https://doi.org/10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  48. Su Y-C, Jiang S, Gan Y, Chen Z, Lu J-M (2019) Investigation of the mechanical responses of copper nanowires based on molecular dynamics and coarse-grained molecular dynamics. Comput Particle Mech 6(2):177–190. https://doi.org/10.1007/s40571-018-0205-8

    Article  Google Scholar 

  49. Sulsky D, Chen Z, Schreyer HL (1994) A particle method for history-dependent materials. Comput Methods Appl Mech Eng 118(1–2):179–196. https://doi.org/10.1016/0045-7825(94)90112-0

    Article  MathSciNet  MATH  Google Scholar 

  50. Sung P-H, Wu C-D, Fang T-H (2012) Effects of temperature, loading rate and nanowire length on torsional deformation and mechanical properties of aluminium nanowires investigated using molecular dynamics simulation. J Phys D Appl Phys 45(21):215303. https://doi.org/10.1088/0022-3727/45/21/215303

    Article  Google Scholar 

  51. Tran Q-A, Sołowski W (2019) Generalized Interpolation Material Point Method modelling of large deformation problems including strain-rate effects–Application to penetration and progressive failure problems. Comput Geotech 106:249–265. https://doi.org/10.1016/j.compgeo.2018.10.020

    Article  Google Scholar 

  52. Tsuzuki H, Branicio PS, Rino JP (2007) Structural characterization of deformed crystals by analysis of common atomic neighborhood. Comput Phys Commun 177(6):518–523. https://doi.org/10.1016/j.cpc.2007.05.018

    Article  Google Scholar 

  53. Tuckerman M (2010) Statistical mechanics: theory and molecular simulation. Oxford University Press, Oxford

    MATH  Google Scholar 

  54. Ukritchon B, Keawsawasvong S (2019) Undrained lower bound solutions for end bearing capacity of shallow circular piles in non-homogeneous and anisotropic clays. Int J Numer Anal Meth Geomech 44(5):596–632. https://doi.org/10.1002/nag.3018

    Article  Google Scholar 

  55. Wang Y, Han F, Lubineau G (2019) A hybrid local/nonlocal continuum mechanics modeling and simulation of fracture in brittle materials. CMES-Comput Model Eng Sci 121(2):399–423

    Google Scholar 

  56. Wu HA (2004) Molecular dynamics simulation of loading rate and surface effects on the elastic bending behavior of metal nanorod. Comput Mater Sci 31(3–4):287–291. https://doi.org/10.1016/j.commatsci.2004.03.017

    Article  Google Scholar 

  57. Zhan HF, Gu YT (2012) Theoretical and numerical investigation of bending properties of Cu nanowires. Comput Mater Sci 55:73–80. https://doi.org/10.1016/j.commatsci.2011.12.024

    Article  Google Scholar 

  58. Zhang X, Chen Z, Liu Y (2016) The material point method: a continuum-based particle method for extreme loading cases. Academic Press, Cambridge

    Google Scholar 

  59. Zheng Y, Zhang H, Chen Z, Jiang S (2009) Deformation and stability of Copper Nanowires under Bending. Int J Multiscale Comput Eng 7(3):205–215. https://doi.org/10.1615/IntJMultCompEng.v7.i3.40

    Article  Google Scholar 

Download references

Acknowledgements

We appreciate the suggestions and/or comments from both the reviewers and editor to improve the manuscript quality.

Funding

This work was partially supported by the U.S. Army Corps of Engineers Laboratory [Engineering Research and Development Center (ERDC) in Vicksburg, MS].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhen Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Availability of data and material

All data included in this study are available upon request by contacting the corresponding author.

Code availability

The GIMP code and all input decks used in this study are available upon request by contacting the corresponding author.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Su, YC., Sewell, T. & Chen, Z. Comparative investigation of shear-band evolution using discrete and continuum-based particle methods. Acta Geotech. 16, 2337–2354 (2021). https://doi.org/10.1007/s11440-021-01150-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-021-01150-8

Keywords

Navigation