Skip to main content
Log in

Simulation of rock failure modes in thermal spallation drilling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Thermal spallation drilling is a contact-less means of borehole excavation that works by exposing a rock surface to a high-temperature jet flame. In this study, we investigate crucial factors for the success of such thermal drilling operations using numerical simulations of the thermomechanical processes leading to rock failure at the borehole surface. To that end, we integrate a model developed for spalling failure with our thermomechanical simulations. In particular, we consider the role of material heterogeneities, maximum jet-flame temperature and maximum jet-flame temperature rise time on the onset of inelastic deformation and subsequent damage. We further investigate differences in energy consumption for the studied system configurations. The simulations highlight the importance of material composition, as thermal spallation is favored in fine-grained material with strong material heterogeneity. The model is used to test the relationship between the jet-flame temperature and the onset of thermal spallation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Augustine CR (2009) Hydrothermal spallation drilling and advanced energy conversion technologies for engineered geothermal systems, Ph.D. thesis, Massachusetts Institute of Technology

  2. Augustine C, Tester JW (2009) Hydrothermal flames: from phenomenological experimental demonstrations to quantitative understanding. J Supercrit Fluids 47(3):415–430

    Google Scholar 

  3. Augustine C, Tester JW, Anderson B, Petty S, Livesay B (2006) A comparison of geothermal with oil and gas well drilling costs. In: Proceedings of the 31st workshop on geothermal reservoir engineering, Curran Associates Inc. New York, pp 5–19

  4. Bass JD (1995) Elasticity of minerals, glasses, and melts. Min Phys Crystallogr Handb Phys Constants 2:45–63

    Google Scholar 

  5. Beentjes I, Bender JT, Tester JW (2019) Dissolution and thermal spallation of barre granite using pure water hydrothermal jets. Rock Mech Rock Eng. https://doi.org/10.1007/s00603-018-1647-2

    Article  Google Scholar 

  6. Browning JA (1982) Flame jet drilling and chambering to great depths in crystalline rock., Tech. rep., Browning Engineering Corp, Hanover, NH, USA

  7. Clauser C, Huenges E (1995) Thermal conductivity of rocks and minerals. Am Geophys Union (AGU) 3:105–126. https://doi.org/10.1029/RF003p0105

    Article  Google Scholar 

  8. Diederichs MS (2007) The 2003 Canadian geotechnical colloquium: mechanistic interpretation and practical application of damage and spalling prediction criteria for deep tunnelling. Can Geotech J 44(9):1082–1116

    Google Scholar 

  9. Diederichs MS, Kaiser PK, Eberhardt E (2004) Damage initiation and propagation in hard rock during tunnelling and the influence of near-face stress rotation. Int J Rock Mech Min Sci 41(5):785–812

    Google Scholar 

  10. Eberhardt E, Stimpson B, Stead D (1999) Effects of grain size on the initiation and propagation thresholds of stress-induced brittle fractures. Rock Mech Rock Eng 32(2):81–99

    Google Scholar 

  11. Fairhurst C, Cook N (1966) The phenomenon of rock splitting parallel to the direction compression in the neighbourhood of a surface. In: 1st ISRM congress, international society for rock mechanics and rock engineering

  12. Findikakis A (2004) Heat capacity analysis report, Tech. rep., Yucca Mountain Project, Las Vegas, Nevada (US)

  13. Fridleifsson IB, Bertani R, Huenges E, Lund JW, Ragnarsson A, Rybach L et al (2008) The possible role and contribution of geothermal energy to the mitigation of climate change. In: IPCC scoping meeting on renewable energy sources, proceedings, Luebeck, Germany, vol 20, Citeseer, pp 59–80

  14. Gaston D, Newman C, Hansen G, Lebrun-Grandié D (2009) Moose: a parallel computational framework for coupled systems of nonlinear equations. Nucl Eng Des 239:1768–1778

    Google Scholar 

  15. Geller L (1970) A new look at thermal rock fracturing. Trans Inst Min Metall 79:A133–A170

    Google Scholar 

  16. Germanovich LN (1997) Thermal spalling of rock. In: Advances in fracture research, proceedings of the 9th international conference on fracture, vol 6, Pergamon, pp 2771–2782

  17. Germanovich LN (1984) Stress state in the vicinity of a drillhole cut by flame. Soviet Min 20(4):245–253. https://doi.org/10.1007/BF02497039

    Article  Google Scholar 

  18. Hoek E, Brown ET (1980) Underground excavations in rock. CRC Press, Boca Raton

    Google Scholar 

  19. Hoek E, Brown ET (1997) Practical estimates of rock mass strength. Int J Rock Mech Min Sci 34(8):1165–1186

    Google Scholar 

  20. Höser D, Rudolf von Rohr P (2018) Experimental heat transfer study of confined flame jet impinging on a flat surface. Exp Thermal Fluid Sci 91:166–174. https://doi.org/10.1016/j.expthermflusci.2017.10.014

    Article  Google Scholar 

  21. Höser D, Meier T, Patru A, Kant M, Rudolf von Rohr P (2018) An experimental study of the influence of uniaxial load on flame jet drilling. Int J Rock Mech Min Sci 106:311–318. https://doi.org/10.1016/j.ijrmms.2018.04.007

    Article  Google Scholar 

  22. Hu X, Song X, Li G, Shen Z, Lyu Z, Shi Y, Zheng R (2018) An analytical model to evaluate the heating conditions for drilling in hard rock using an innovative hydrothermal spallation method. Appl Therm Eng 142:709–716. https://doi.org/10.1016/j.applthermaleng.2018.07.043

    Article  Google Scholar 

  23. Huotari T, Kukkonen I (2004) Thermal expansion properties of rocks: literature survey and estimation of thermal expansion coefficient for Olkiluoto mica gneiss. Posiva Oy, Olkiluoto, Working Report 4:62

  24. Jaeger JC, Cook NG, Zimmerman R (2009) Fundamentals of rock mechanics. Wiley, Hoboken

    Google Scholar 

  25. Kant MA, Rossi E, Becker D, von Rohr PR (2017) Enhancing the drilling process for geothermal resources by combining conventional drilling and the spallation technology. In: Stanford geothermal workshop, Stanford University Press, Stanford

  26. Kant MA, Rossi E, Madonna C, Höser D, Rudolf von Rohr P (2017) A theory on thermal spalling of rocks with a focus on thermal spallation drilling. J Geophys Res: Solid Earth 122(3):1805–1815

    Google Scholar 

  27. Kant MA, Ammann J, Rossi E, Madonna C, Höser D, Rudolf von Rohr P (2017) Thermal properties of central aare granite for temperatures up to 500 c: Irreversible changes due to thermal crack formation. Geophys Res Lett 44(2):771–776

    Google Scholar 

  28. Kazerani T (2013) Effect of micromechanical parameters of microstructure on compressive and tensile failure process of rock. Int J Rock Mech Min Sci 64:44–55

    Google Scholar 

  29. Kirk BS, Peterson JW, Stogner RH, Carey GF (2006) libmesh: a C++ library for parallel adaptive mesh refinement/ coarsening simulations. Eng Comput 22:237–254

    Google Scholar 

  30. Lyu Z, Li G, Song X, Cui L, Ji G, Wang Z, Hu X, Xu Z (2017) Comparative numerical analysis and optimization in downhole combustion chamber of thermal spallation drilling. Appl Therm Eng 119:481–489

    Google Scholar 

  31. Lyu Z, Song X, Li G, Shi Y, Liu Y (2018) Analysis of temperature simulation in downhole reaction chamber of hydrothermal jet drilling. Int J Heat Mass Transf 123:342–353

    Google Scholar 

  32. Lyu Z, Song X, Li G (2019) An analytical method to determine rock spallation temperature and degree of heterogeneity in thermal spallation drilling for geothermal energy. Geothermics 77:99–105

    Google Scholar 

  33. Martin CD, Kaiser PK, McCreath DR (1999) Hoek–Brown parameters for predicting the depth of brittle failure around tunnels. Can Geotech J 36(1):136–151

    Google Scholar 

  34. Mavko G, Mukerji T, Dvorkin J (2009) The rock physics handbook: tools for seismic analysis of porous media, 2nd edn. Cambridge University Press, Cambridge. https://doi.org/10.1017/CBO9780511626753

    Book  Google Scholar 

  35. Meier T, May DA, Rudolf von Rohr P (2016) Numerical investigation of thermal spallation drilling using an uncoupled quasi-static thermoelastic finite element formulation. J Therm Stresses 39(9):1138–1151. https://doi.org/10.1080/01495739.2016.1193417

    Article  Google Scholar 

  36. Perras MA, Diederichs MS (2016) Predicting excavation damage zone depths in brittle rocks. J Rock Mech Geotech Eng 8(1):60–74

    Google Scholar 

  37. Potter RM, Tester JW (1998) Continuous drilling of vertical boreholes by thermal processes: including rock spallation and fusion. US Patent 5,771,984

  38. Potter R, Potter J, Wideman T (2010) Laboratory study and field demonstration of hydrothermal spallation drilling. GRC Trans 34:249–252

    Google Scholar 

  39. Preston F (1926) The spalling of bricks. J Am Ceram Soc 9(10):654–658

    Google Scholar 

  40. Preston F, White H (1934) Observations on spalling. J Am Ceram Soc 17(1–12):137–144

    Google Scholar 

  41. Rauenzahn R, Tester J (1989) Rock failure mechanisms of flame-jet thermal spallation drilling–theory and experimental testing. Int J Rock Mech Min Sci Geomech Abstr 26(5):381–399. https://doi.org/10.1016/0148-9062(89)90935-2

    Article  Google Scholar 

  42. Rauenzahn RM, Tester JW (1991) Numerical simulation and field testing of flame-jet thermal spallation drilling—2. Experimental verification. Int J Heat Mass Transf 34(3):809–818

    Google Scholar 

  43. Rauenzahn RM, Tester JW (1991) Numerical simulation and field testing of flame-jet thermal spallation drilling—1. Model development. Int J Heat Mass Transf 34(3):795–808

    Google Scholar 

  44. Rinaldi R (1984) A technical and economic evaluation of thermal spallation drilling technology. Dynamics of Fluids in Fractured Rock 253

  45. Rojat F, Labiouse V, Kaiser PK, Descoeudres F (2008) Brittle rock failure in the steg lateral adit of the lötschberg base tunnel. Rock Mech Rock Eng 42(2):341. https://doi.org/10.1007/s00603-008-0015-z

    Article  Google Scholar 

  46. Rossi E, Kant MA, Madonna C, Saar MO, Rudolf von Rohr P (2018) The effects of high heating rate and high temperature on the rock strength: feasibility study of a thermally assisted drilling method. Rock Mech Rock Eng 51(9):2957–2964

    Google Scholar 

  47. Rossi E, Kant MA, Borkeloh O, Saar MO, von Rohr PR (2018) Experiments on rock-bit interaction during a combined thermo-mechanical drilling method. In: Stanford geothermal workshop, Stanford University Press, Stanford

  48. Rothenfluh T, Schuler MJ, Rudolf von Rohr P (2013) Experimental heat transfer study on impinging, turbulent, near-critical water jets confined by an annular wall. J Supercrit Fluids 77:79–90

    Google Scholar 

  49. Rudolf Von Rohr P, Rothenfluh T, Schuler M (2015) Rock drilling in great depths by thermal fragmentation using highly exothermic reactions evolving in the environment of a water-based drilling fluid. US Patent 8,967,293

  50. Schuler MJ, Rothenfluh T, Rudolf von Rohr P (2013) Numerical analysis of penetration lengths in submerged supercritical water jets. J Supercrit Fluids 82:213–220

    Google Scholar 

  51. Schuler MJ, Rothenfluh T, Rudolf von Rohr P (2013) Simulation of the thermal field of submerged supercritical water jets at near-critical pressures. J Supercrit Fluids 75:128–137

    Google Scholar 

  52. Schuler MJ, Rothenfluh T, Stathopoulos P, Brkic D, Meier T, Rudolf von Rohr P (2014) Simulating supercritical water jets with a variable turbulent Prandtl number. Chem Eng Technol 37(11):1896–1902

    Google Scholar 

  53. Singh JP, Walsh SD, Koch DL (2015) Brownian dynamics of a suspension of particles with constrained voronoi cell volumes. Langmuir 31(24):6829–6841

    Google Scholar 

  54. Soles J, Geller LB (2015) Brownian dynamics of a suspension of particles with constrained voronoi cell volumes, Tech. Bull. Mines Branch Can. TB 53

  55. Song X, Lyu Z, Li G, Hu X, Liu Y, Shi Y (2018) Numerical study on reaction characteristics under high pressure conditions for thermal spallation drilling. Appl Therm Eng 129:1304–1314

    Google Scholar 

  56. Stathopoulos P, Meier T, von Rohr PR (2014) Hydrothermal flame impingement experiments. Combustion chamber design and impingement temperature profiles. J Supercrit Fluids 89:48–57. https://doi.org/10.1016/j.supflu.2013.12.005

    Article  Google Scholar 

  57. Tang C, Kaiser P (1998) Numerical simulation of cumulative damage and seismic energy release during brittle rock failure–part i: fundamentals. Int J Rock Mech Min Sci 35(2):113–121

    Google Scholar 

  58. Tester J, Herzog H, Chen Z, Potter R, Frank M (1994) Prospects for universal geothermal energy from heat mining. Sci Global Secur 5(1):99–121

    Google Scholar 

  59. Thirumalai K et al. (1969) Process of thermal spalling behavior in rocks an exploratory study, in: The 11th US symposium on rock mechanics (USRMS), American Rock Mechanics Association

  60. Vogler D, Walsh SDC, Bayer P, Amann F (2017) Comparison of surface properties in natural and artificially generated fractures in a crystalline rock. Rock Mech Rock Eng 50(11):2891–2909. https://doi.org/10.1007/s00603-017-1281-4

    Article  Google Scholar 

  61. Vogler D, Walsh SDC, Saar MO (2020) A numerical investigation into key factors controlling hard rock excavation via electropulse stimulation. J Rock Mech Geotech Eng (in press)

  62. Walsh SDC (2013) Modeling thermally induced failure of brittle geomaterials, Tech. rep

  63. Walsh SDC, Lomov IN (2013) Micromechanical modeling of thermal spallation in granitic rock. Int J Heat Mass Transf 65:366–373

    Google Scholar 

  64. Walsh SDC, Vogler D (2020) Simulating electropulse fracture of granitic rock. Int J Rock Mech Mining Sci (in press)

  65. Walsh SDC, Lomov I, Roberts JJ (2011) Geomechanical modeling for thermal spallation drilling. GRC Trans 35:277–282

    Google Scholar 

  66. Walsh SDC, Settgast RR, Johnson S (2012) A laboratory and numerical study of chemo-mechanically mediated permeability evolution in the near-wellbore region. In: 46th meeting of the American rock mechanics association, ARMA, Chicago

  67. Walsh SDC, Lomov IN, Wideman TW, Potter JM (2014) Size dependent spall aspect ratio and its effects in thermal spallation. Int J Rock Mech Min Sci 70:375–380

    Google Scholar 

  68. Wilkinson MA, Tester JW (1993) Experimental measurement of surface temperatures during flame-jet induced thermal spallation. Rock Mech Rock Eng 26(1):29–62

    Google Scholar 

  69. Wilkinson MA, Tester JW (1993) Computational modeling of the gas-phase transport phenomena during flame-jet thermal spallation drilling. Int J Heat Mass Transf 36(14):3459–3475

    MATH  Google Scholar 

  70. Williams RE (1986) The thermal spallation drilling process. Geothermics 15(1):17–22

    Google Scholar 

  71. Zhang S, Huang Z, Li G, Wu X, Peng C, Zhang W (2018) Numerical analysis of transient conjugate heat transfer and thermal stress distribution in geothermal drilling with high-pressure liquid nitrogen jet. Appl Therm Eng 129:1348–1357

    Google Scholar 

  72. Zhou Z, Lu Y, Tang J, Zhang X, Li Q (2017) Numerical simulation of supercritical carbon dioxide jet at well bottom. Appl Therm Eng 121:210–217

    Google Scholar 

Download references

Acknowledgements

The Swiss Federal Office of Energy (Bundesamt für Energie—BFE) has supported this work under Grant Nr. SI/501658-01. MOS further thanks the Werner Siemens Foundation (Werner Siemens-Stiftung—WSS) for their endowment of the Geothermal Energy and Geofluids (GEG.ethz.ch) group at ETH Zurich (ETHZ), Switzerland. The authors want to thank Philipp Schädle, Andrew Wilkins, Daniel Schwen, Andrew E. Slaughter, Cody Permann and members of the MOOSE team for constructive discussions. Any opinions, findings, conclusions and/or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the BFE, WSS, ETHZ or the MOOSE team. The authors also thank the two anonymous reviewers for their helpful suggestions that improved the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Vogler.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogler, D., Walsh, S.D.C., von Rohr, P.R. et al. Simulation of rock failure modes in thermal spallation drilling. Acta Geotech. 15, 2327–2340 (2020). https://doi.org/10.1007/s11440-020-00927-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-00927-7

Keywords

Navigation