Skip to main content
Log in

Analysis of soil drying incorporating a constitutive model for curling

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

This paper focuses on the shrinkage behavior of soil specimens involving sand, kaolinite, and kaolinite/sand mixtures subjected to desiccation under controlled conditions. Both, free and restrained shrinkage conditions are studied. The experiments show that pure soils do not curl upon unrestrained shrinkage; however, (under the same conditions) kaolinite/sand mixtures exhibited a marked curling. Furthermore, the mixture with the higher sand content broke through the middle of the sample after displaying a significant curling. Soils subjected to restricted shrinkage developed cracks with slight curling. To simulate the observed behavior, a mechanical model able to reproduce the detachment of the soil sample from the mold is proposed in this work and implemented in a fully coupled hydro-mechanical finite-element code. It is concluded that suction and differential shrinkage are key factors influencing the curling behavior of soils. The proposed framework was able to satisfactorily explain and reproduce the different stages and features of soil behavior observed in the experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Allen JRL (1986) On the curl of desiccation polygons. Sediment Geol 46:23–31. https://doi.org/10.1016/0037-0738(86)90003-5

    Article  Google Scholar 

  2. Amarasiri AL, Kodikara JK (2013) Numerical modeling of desiccation cracking using the cohesive crack method. Int J Geomech 13:213–221. https://doi.org/10.1061/(ASCE)GM.1943-5622.0000192

    Article  Google Scholar 

  3. Amarasiri AL, Kodikara JK, Costa S (2011) Numerical modelling of desiccation cracking. Int J Numer Anal Methods Geomech 35:82–96. https://doi.org/10.1002/nag.894

    Article  Google Scholar 

  4. Asahina D, Houseworth JE, Birkholzer JT, Rutqvist J, Bolander JE (2014) Hydro-mechanical model for wetting/drying and fracture development in geomaterials. Comput Geosci 65:13–23. https://doi.org/10.1016/j.cageo.2013.12.009

    Article  Google Scholar 

  5. ASTM C778-17 (2017) Standard Specification for Standard Sand. ASTM Int

  6. Berney IV, Ernest S, Hodo WD, Peters JF, Myers TE, Olsen RS, Sharp MK (2008) Assessment of the effectiveness of clay soil covers as engineered barriers in waste disposal facilities with emphasis on modeling cracking behavior. Nucl. Regul. Comm. Washingt, DC

    Google Scholar 

  7. Bhandari AR, Powrie W, Harkness RM (2012) A digital image-based deformation measurement system for triaxial tests. Geotech Test J. https://doi.org/10.1520/GTJ103821

    Article  Google Scholar 

  8. Borja RI (2000) Finite element model for strain localization analysis of strongly discontinuous fields based on standard Galerkin approximation. Comput Methods Appl Mech Eng. https://doi.org/10.1016/S0045-7825(00)00176-6

    Article  MATH  Google Scholar 

  9. Borja RI (2004) Cam-Clay plasticity. Part V: A mathematical framework for three-phase deformation and strain localization analyses of partially saturated porous media. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2003.12.067

    Article  MathSciNet  MATH  Google Scholar 

  10. Bradley WH (1933) Factors that determine the curvature of mud-cracked layers. Am J Sci 26:55–71

    Article  Google Scholar 

  11. Tran H, Wang Y, Nguyen D, Kodikara J, Sánchez M, Bui H (2019) Modelling 3D desiccation cracking in clayey soils using a size-dependent SPHcomputational approach. Comput Geotech 116:103209. https://doi.org/10.1016/j.compgeo.2019.103209

    Article  Google Scholar 

  12. Cleto PR, Manzoli OL, Sánchez M, Maedo MA, Beserra LBS, Guimarães LJN (2020) Hydro-mechanical coupled modeling of hydraulic fracturing using the mesh fragmentation technique. Comput Geotech (Accepted)

  13. Coussy O (2004) Poromechanics. Wiley, New York

    MATH  Google Scholar 

  14. Dow DB (1964) The effect of salinity on the formation of mudcracks. Compass Sigma Gamma Epsil 41:162–166

    Google Scholar 

  15. Al-Jeznawi D, Sanchez M, Al-Taie AJ, Zielinski M (2019) Experimental studies on curling development of artificial soils. J Rock Mech Geotech Eng 11(6):1264–1273. https://doi.org/10.1016/j.jrmge.2019.02.006

    Article  Google Scholar 

  16. Gens A, Sánchez M, Guimarães LDN, Alonso EE, Lloret A, Olivella S, Villar MV, Huertas F (2009) A full-scale in situ heating test for high-level nuclear waste disposal: observations, analysis and interpretation. Géotechnique 59:377–399. https://doi.org/10.1680/geot.2009.59.4.377

    Article  Google Scholar 

  17. Gens A, Sánchez M, Sheng D (2006) On constitutive modelling of unsaturated soils. Acta Geotech. https://doi.org/10.1007/s11440-006-0013-9

    Article  Google Scholar 

  18. van Genuchten MT (1980) A closed-form equation for predicting the hydraulic conductivity of unsaturated soils 1. Soil Sci Soc Am J 44:892. https://doi.org/10.2136/sssaj1980.03615995004400050002x

    Article  Google Scholar 

  19. Gilliot JM, Vaudour E, Michelin J (2017) Soil surface roughness measurement: a new fully automatic photogrammetric approach applied to agricultural bare fields. Comput Electron Agric 134:63–78. https://doi.org/10.1016/j.compag.2017.01.010

    Article  Google Scholar 

  20. Graham J, Oswell JM, Gray MN (1992) The effective stress concept in saturated sand-clay buffer. Can Geotech J. https://doi.org/10.1139/t92-121

    Article  Google Scholar 

  21. Gui YL, Hu W, Zhao ZY, Zhu X (2018) Numerical modelling of a field soil desiccation test using a cohesive fracture model with Voronoi tessellations. Acta Geotech. https://doi.org/10.1007/s11440-017-0558-9

    Article  Google Scholar 

  22. Gui YL, Zhao ZY, Kodikara J, Bui HH, Yang SQ (2016) Numerical modelling of laboratory soil desiccation cracking using UDEC with a mix-mode cohesive fracture model. Eng Geol 202:14–23. https://doi.org/10.1016/j.enggeo.2015.12.028

    Article  Google Scholar 

  23. Hirobe S, Oguni K (2016) Coupling analysis of pattern formation in desiccation cracks. Comput Methods Appl Mech Eng 307:470–488. https://doi.org/10.1016/j.cma.2016.04.029

    Article  MathSciNet  MATH  Google Scholar 

  24. Kindle EM (1926) Contrasted types of mud-cracks. Trans R Soc Canada 20:71–75

    Google Scholar 

  25. Kindle EM, Cole LH (1938) Some mud cracks experiments. Geol Meere Binnergewasser 2:278–283

    Google Scholar 

  26. Kindle E (1917) Some factors affecting the development of mud-cracks. J Geol 25:135–144

    Article  Google Scholar 

  27. Kodikara JK, Nahlawi H, Bouazza A (2004) Modelling of curling in desiccating clay. Can Geotech J 41:560–566. https://doi.org/10.1139/t04-015

    Article  Google Scholar 

  28. Manzoli OL, Gamino AL, Rodrigues EA, Claro GKS (2012) Modeling of interfaces in two-dimensional problems using solid finite elements with high aspect ratio. Comput Struct 94–95:70–82. https://doi.org/10.1016/j.compstruc.2011.12.001

    Article  Google Scholar 

  29. Manzoli O, Sánchez M, Maedo M, Hajjat J, Guimararães LJN (2017) An orthotropic interface damage model for simulating drying processes in soils. Acta Geotech 2017:1–16

    Google Scholar 

  30. Manzoli OL, Maedo MA, Bitencourt LAG, Rodrigues EA (2016) On the use of finite elements with a high aspect ratio for modeling cracks in quasi-brittle materials. Eng Fract Mech. https://doi.org/10.1016/j.engfracmech.2015.12.026

    Article  Google Scholar 

  31. Manzoli OL, Cleto PR, Sánchez M, Guimarães LJN, Maedo MA (2019) On the use of high aspect ratio finite elements to model hydraulic fracturing in deformable porous media. Comput Methods Appl Mech Eng. https://doi.org/10.1016/j.cma.2019.03.006

    Article  MathSciNet  MATH  Google Scholar 

  32. METER Group (2020) T5 Tensiometer. https://www.metergroup.com/environment/products/t5-tensiometer-water-potential/. Accessed 20 Jan 2020

  33. Minter WEL (1970) Origin of mud polygons that are concave downward. J Sediment Petrol 40:755–764

    Article  Google Scholar 

  34. Morris PH, Graham J, Williams DJ (1992) Cracking in drying soils. Can Geotech J 29:263–277. https://doi.org/10.1139/t92-030

    Article  Google Scholar 

  35. Nouwakpo SK, Huang CH (2012) A simplified close-range photogrammetric technique for soil erosion assessment. Soil Sci Soc Am J 76:70–84

    Article  Google Scholar 

  36. Nuth M, Laloui L (2008) Effective stress concept in unsaturated soils: clarification and validation of a unified framework. Int J Numer Anal Methods Geomech. https://doi.org/10.1002/nag.645

    Article  MATH  Google Scholar 

  37. Olivella S, Alonso EE (2008) Gas flow through clay barriers. Géotechnique 58:157–176. https://doi.org/10.1680/geot.2008.58.3.157

    Article  Google Scholar 

  38. Olivella S, Gens A, Carrera J, Alonso EE (1996) Numerical formulation for a simulator (CODE_BRIGHT) for the coupled analysis of saline media. Eng Comput 13:87–112. https://doi.org/10.1108/02644409610151575

    Article  MATH  Google Scholar 

  39. Oliver J, Huespe AE, Cante JC (2008) An implicit/explicit integration scheme to increase computability of non-linear material and contact/friction problems. Comput Methods Appl Mech Eng 197:1865–1889. https://doi.org/10.1016/j.cma.2007.11.027

    Article  MATH  Google Scholar 

  40. Peron H, Hueckel T, Laloui L, Hu LB (2009) Fundamentals of desiccation cracking of fine-grained soils: experimental characterisation and mechanisms identification. Can Geotech J 46:1177–1201. https://doi.org/10.1139/T09-054

    Article  Google Scholar 

  41. Peron H, Laloui L, Hu LB, Hueckel T (2013) Formation of drying crack patterns in soils: a deterministic approach. Acta Geotech 8:215–221. https://doi.org/10.1007/s11440-012-0184-5

    Article  Google Scholar 

  42. Prazeres PGC, Bitencourt LAG, Bittencourt TN, Manzoli OL (2016) A modified implicit–explicit integration scheme: an application to elastoplasticity problems. J Braz Soc Mech Sci Eng 38:151–161. https://doi.org/10.1007/s40430-015-0343-3

    Article  Google Scholar 

  43. Rodrigues EA, Manzoli OL, Bitencourt LAG Jr, Bittencourt TN, Sánchez M (2017) An adaptive concurrent multiscale model for concrete based on coupling finite elements. Comput Methods Appl Mech Engrg. https://doi.org/10.1016/j.cma.2017.08.048

    Article  MATH  Google Scholar 

  44. Rodríguez R, Sánchez M, Ledesma A, Lloret A (2007) Experimental and numerical analysis of desiccation of a mining waste. Can Geotech J 44:644–658. https://doi.org/10.1139/t07-016

    Article  Google Scholar 

  45. Sánchez M, Gens A, Guimarães L (2012) Thermal-hydraulic-mechanical (THM) behaviour of a large-scale in situ heating experiment during cooling and dismantling. Can Geotech J. https://doi.org/10.1139/T2012-076

    Article  Google Scholar 

  46. Sanchez M, Atique A, Kim S, Romero E, Zielinski M (2013) Exploring desiccation cracks in soils using a 2D profile laser device. Acta Geotech 8:583–596. https://doi.org/10.1007/s11440-013-0272-1

    Article  Google Scholar 

  47. Sánchez M, Manzoli OL, Guimarães LJN (2014) Modeling 3-D desiccation soil crack networks using a mesh fragmentation technique. Comput Geotech 62:27–39. https://doi.org/10.1016/j.compgeo.2014.06.009

    Article  Google Scholar 

  48. Shin H, Santamarina JC (2011) Desiccation cracks in saturated fine-grained soils: particle-level phenomena and effective-stress analysis. Geotechnique. https://doi.org/10.1680/geot.8.P.012

    Article  Google Scholar 

  49. Shit PK, Bhunia GS, Maiti R (2015) Soil crack morphology analysis using image processing techniques. Model Earth Syst Environ 1:35. https://doi.org/10.1007/s40808-015-0036-z

    Article  Google Scholar 

  50. Stirling RA, Glendinning S, Davie CT (2017) Modelling the deterioration of the near surface caused by drying induced cracking. Appl Clay Sci 146:176–185. https://doi.org/10.1016/j.clay.2017.06.003

    Article  Google Scholar 

  51. Tran KM, Bui HH, Kodikara J, Sanchez M (2019) Soil curling process and its influencing factors. Can Geotech J. https://doi.org/10.1139/cgj-2018-0489

    Article  Google Scholar 

  52. Tran KM, Bui HH, Sánchez M, Kodikara J (2020) A DEM approach to study desiccation processes in slurry soils. Comput Geotech. https://doi.org/10.1016/j.compgeo.2020.103448

    Article  Google Scholar 

  53. Universitat Politécnica de Catalunya (2019) CODE_BRIGHT - User’s Guide

  54. Valentin C, Bresson LM (1992) Morphology, genesis and classification of surface crusts in loamy and sandy soils. Geoderma. https://doi.org/10.1016/0016-7061(92)90085-L

    Article  Google Scholar 

  55. Ward F (1923) Note on mud cracks. Am J Sci 6:308–309

    Article  Google Scholar 

  56. Witherspoon PA, Wang JSY, Iwai K, Gale JE (1980) Validity of Cubic Law for fluid flow in a deformable rock fracture. Water Resour Res. https://doi.org/10.1029/WR016i006p01016

    Article  Google Scholar 

  57. Zhang X, Li L, Chen G, Lytton R (2014) A photogrammetry-based method to measure total and local volume changes of unsaturated soils during triaxial testing. Acta Geotech 10:55–82. https://doi.org/10.1007/s11440-014-0346-8

    Article  Google Scholar 

  58. Zielinski M, Sánchez M, Romero E, Atique A (2014) Precise observation of soil surface curling. Geoderma 226–227:85–93. https://doi.org/10.1016/j.geoderma.2014.02.005

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support provided by the National Council for Scientific and Technological Development (CNPq, proc: 234003/2014-6) and Texas A&M University through the Texas A&M Energy Institute Graduate Fellowship and the Departmental Fellowship Award. The financial support from NEUP-DOE, USA, through Award DE-NE0008762 is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcelo Sánchez.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maedo, M., Sánchez, M., Aljeznawi, D. et al. Analysis of soil drying incorporating a constitutive model for curling. Acta Geotech. 15, 2619–2635 (2020). https://doi.org/10.1007/s11440-020-00920-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-020-00920-0

Keywords

Navigation