Skip to main content
Log in

Mathematical modelling and simulation of microbial carbonate precipitation: the urea hydrolysis reaction

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

Microbial carbonate precipitation is expected to play a major role in next-generation soil improvement technologies. To date, research into this method has relied on experimental and/or observational approaches. However, in order to understand the long-term effects of microbial carbonate precipitation and apply these to real environments, it is necessary to employ a predictive approach to determine the future state of the soil when using this soil improvement method. In this work, a mathematical model and numerical simulations based on the reaction–diffusion system for the microbial urea hydrolysis reaction are proposed. These techniques may be used to provide the spatiotemporal precipitation patterns of carbonates between soil particles and the particle surfaces. The simulation results revealed that the characteristic precipitation patterns depend on the diffusion of carbonates caused by the microbial urea hydrolysis reaction, and there was a significant shift in the amount of carbonate from a dissipated state into an equilibrium state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Akiyama M, Kawasaki S (2019) Biogeochemical simulation of microbially induced calcite precipitation with Pararhodobacter sp. strain SO1. Acta Geotech 14(3):685–696

    Google Scholar 

  2. Al-Thawadi S, Cord-Ruwisch R (2012) Calcium carbonate crystals formation by ureolytic bacteria isolated from Australian soil and sludge. J Adv Sci Eng Res 2(1):12–26

    Google Scholar 

  3. Alvarez R, Steinbach HS (2009) A review of the effects of tillage systems on some soil physical properties, water content, nitrate availability and crops yield in the Argentine Pampas. Soil Tillage Res 104(2009):1–15

    Google Scholar 

  4. Ben-Jacob E, Cohen I, Shochet O, Aranson I, Levine H, Tsimring L (1995) Complex bacterial patterns. Nature 373(6515):566

    Google Scholar 

  5. Boore DM (2003) Simulation of ground motion using the stochastic method. Pure appl Geophys 160(2003):635–676

    Google Scholar 

  6. Boquet E, Boronat A, Ramos-Cormenzana A (1973) Production of calcite (calcium carbonate) crystals by soil bacteria is a general phenomenon. Nature 246(5434):527

    Google Scholar 

  7. Cambell CS, Cleary PW, Hopkins M (1995) Large-scale landslide simulations: global deformation, velocities and basal friction. J Geophys Res 100(B5):8267–8283

    Google Scholar 

  8. Chen W, Qie T (2011) Numerical simulations for large deformation of granular materials using smoothed particle hydrodynamics method. Int J Geomech 12(2):127–135

    Google Scholar 

  9. Cheng L, Shahin MA, Chu J (2019) Soil bio-cementation using a new one-phase low-pH injection method. Acta Geotech 14(3):615–626

    Google Scholar 

  10. Chou CW, Seagren EA, Aydilek AH, Lai M (2011) Biocalcification of sand through ureolysis. J Geotech Geoenviron Eng 137(12):1179–1189

    Google Scholar 

  11. Chu J, Ivanov V, Naeimi M, Stabnikov V, Liu HL (2014) Optimization of calcium-based bioclogging and biocementation of sand. Acta Geotech 9(2):277–285

    Google Scholar 

  12. Cil MB, Alshibli KA (2014) 3D analysis of kinematic behavior of granular materials in triaxial testing using DEM with flexible membrane boundary. Acta Geotech 9(2):287–298

    Google Scholar 

  13. Cohen I, Golding I, Kozlovsky Y, Ben-Jacob E, Ron IG (1999) Continuous and discrete models of cooperation in complex bacterial colonies. Fractals 7(03):235–247

    Google Scholar 

  14. Dadda A, Geindreau C, Emeriault F, du Roscoat SR, Garandet A, Sapin L, Filet AE (2017) Characterization of microstructural and physical properties changes in biocemented sand using 3D X-ray microtomography. Acta Geotech 12(5):955–970

    Google Scholar 

  15. Danjo T, Kawasaki S (2016) Microbially induced sand cementation method using Pararhodobacter sp. strain SO1, inspired by beachrock formation mechanism. Mater Trans 57(3):428–437

    Google Scholar 

  16. De Muynck W, De Belie N, Verstraete W (2010) Microbial carbonate precipitation in construction materials: a review. Ecol Eng 36(2):118–136

    Google Scholar 

  17. DeJong JT, Fritzges MB, Nüsslein K (2006) Microbially induced cementation to control sand response to undrained shear. J Geotech Geoenviron Eng 132(11):1381–1392

    Google Scholar 

  18. DeJong JT, Mortensen BM, Martinez BC, Nelson DC (2010) Bio-mediated soil improvement. Ecol Eng 36(2010):197–210

    Google Scholar 

  19. Desrues J, Chambon R, Mokni M, Mazerolle F (1996) Void ratio evolution inside shear bands in triaxial sand specimens studied by computed tomography. Géotechnique 46(3):529–546

    Google Scholar 

  20. Ek MB, Mitchell KE, Lin Y, Rogers E, Grunmann P, Koren V, Gayno G, Tarpley JD (2003) Implementation of Noah land surface model advances in the national centers for environmental prediction operational mesoscale Eta model. J Geophys Res 108(D22):8851

    Google Scholar 

  21. Fauriel S, Laloui L (2012) A bio-chemo-hydro-mechanical model for microbially induced calcite precipitation in soils. Comput Geotech 46(2012):104–120

    Google Scholar 

  22. Feng K, Montoya BM, Evans TM (2017) Discrete element method simulations of bio-cemented sands. Comput Geotech 85(2017):139–150

    Google Scholar 

  23. Gao Y, Hang L, He J, Chu J (2019) Mechanical behaviour of biocemented sands at various treatment levels and relative densities. Acta Geotech 14(3):697–707

    Google Scholar 

  24. Golding I, Kozlovsky Y, Cohen I, Ben-Jacob E (1998) Studies of bacterial branching growth using reaction–diffusion models for colonial development. Phys A 260(3–4):510–554

    Google Scholar 

  25. Hatanaka M, Feng L, Matsumura N, Yasu H (2008) A study on the engineering properties of sand improved by the sand compaction pile method. Soils Found 48(1):73–85

    Google Scholar 

  26. Hirose K, Matsubara H (2018) Mechanisms of mudcrack formation and growth in bentonite paste. J Geotech Geoenviron Eng 144(4):04018017

    Google Scholar 

  27. Horpibulsuk S, Miura N, Nagaraj TS (2005) Clay-water/cement ratio identity for cement admixed soft clays. J Geotech Geoenviron Eng 131(2):187–192

    Google Scholar 

  28. Hungr O (1995) A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can Geotech J 32(4):610–623

    Google Scholar 

  29. Iwashita K, Oda M (2000) Micro-deformation mechanism of shear banding process based on modified distinct element method. Powder Technol 109(2000):192–205

    Google Scholar 

  30. Kondo S, Miura T (2010) Reaction–diffusion model as a framework for understanding biological pattern formation. Science 329(5999):1616–1620

    MathSciNet  MATH  Google Scholar 

  31. Konhauser KO (2007) Introduction to geomicrobiology. Wiley, Hoboken

    Google Scholar 

  32. Kozlovsky Y, Cohen I, Golding I, Ben-Jacob E (1999) Lubricating bacteria model for branching growth of bacterial colonies. Phys Rev E 59(6):7025

    Google Scholar 

  33. Lee KJ, McCormick WD, Pearson JE, Swinney HL (1994) Experimental observation of self-replicating spots in a reaction–diffusion system. Nature 369(6477):215

    Google Scholar 

  34. Matsushita M, Hiramatsu F, Kobayashi N, Ozawa T, Yamazaki Y, Matsuyama T (2004) Colony formation in bacteria: experiments and modeling. Biofilms 1(4):305–317

    Google Scholar 

  35. Matsushita M, Wakita J, Itoh H, Watanabe K, Arai T, Matsuyama T, Sakaguchi H, Mimura M (1999) Formation of colony patterns by a bacterial cell population. Phys A 274(1–2):190–199

    Google Scholar 

  36. McCutcheon J, Nothdurft DL, Webb EG, Shuster J, Nothdurft L, Paterson D, Southam G (2017) Building biogenic beachrock: visualizing microbially-mediated carbonate cement precipitation using XFM and a strontium tracer. Chem Geol 465:21–34

    Google Scholar 

  37. Mortensen BM, Haber MJ, DeJong JT, Caslake LF, Nelson DC (2011) Effects of environmental factors on microbial induced calcium carbonate precipitation. J Appl Microbiol 111(2):338–349

    Google Scholar 

  38. Okwadha GD, Li J (2010) Optimum conditions for microbial carbonate precipitation. Chemosphere 81(9):1143–1148

    Google Scholar 

  39. Oshiro H, Matsubara H (2018) Carbonate precipitation through photoautotrophic microorganisms at the Giza cliff in Okinawa, Japan. Environ Earth Sci 77:591

    Google Scholar 

  40. Pearson JE (1993) Complex patterns in a simple system. Science 261(5118):189–192

    Google Scholar 

  41. Rosen BP (1987) Bacterial calcium transport. Biochim Biophys Acta Rev Biomembr 906(1):101–110

    Google Scholar 

  42. Sakiyama H, Matsubara H (2018) Physical, chemical, and biological investigation of an unconformity between limestone and sandstone in a coastal area: Iriomote Island case study. CATENA 171(2018):136–144

    Google Scholar 

  43. Sánchez-Román M, Rivadeneyra MA, Vasconcelos C, McKenzie JA (2007) Biomineralization of carbonate and phosphate by moderately halophilic bacteria. FEMS Microbiol Ecol 61(2):273–284

    Google Scholar 

  44. Shen S, Chai J, Hong Z, Cai F (2005) Analysis of field performance of embankments on soft clay deposit with and without PVD-improvement. Geotext Geomembr 23(2005):463–485

    Google Scholar 

  45. Sun X, Miao L, Tong T, Wang C (2019) Study of the effect of temperature on microbially induced carbonate precipitation. Acta Geotech 14(3):627–638

    Google Scholar 

  46. Tagliaferri F, Waller J, Andò E, Hall SA, Viggiani G, Bésuelle P, DeJong JT (2011) Observing strain localisation processes in bio-cemented sand using x-ray imaging. Granul Matter 13(3):247–250

    Google Scholar 

  47. Terzis D, Laloui L (2018) 3-D micro-architecture and mechanical response of soil cemented via microbial-induced calcite precipitation. Sci Rep 8(1):1416

    Google Scholar 

  48. Terzis D, Laloui L (2019) Cell-free soil bio-cementation with strength, dilatancy and fabric characterization. Acta Geotech 14(3):639–656

    Google Scholar 

  49. Thompson JB, Ferris FG (1990) Cyanobacterial precipitation of gypsum, calcite, and magnesite from natural alkaline lake water. Geology 18(10):995–998

    Google Scholar 

  50. Turing AM (1952) The chemical basis of morphogenesis. Philos Trans R Soc Lond B Biol Sci 237(641):37–72

    MathSciNet  MATH  Google Scholar 

  51. Whiffin VS, Paassen LA, Harkes MP (2007) Microbial carbonate precipitation as a soil improvement technique. Geomicrobiol J 24(2):417–423

    Google Scholar 

  52. White AF, Bullen TD, Vivit DV, Schulz MS, Clow DW (1999) The role of disseminated calcite in the chemical weathering of granitoid rocks. Geochim Cosmochim Acta 63(13–14):1939–1953

    Google Scholar 

  53. Więckowski Z (2004) The material point method in large strain engineering problems. Comput Methods Appl Mech Eng 193(39–41):4417–4438

    MATH  Google Scholar 

  54. Wu Y, Ajo-Franklin JB, Spycher N, Hubbard SS, Zhang G, Williams KH, Taylor J, Fujita Y, Smith R (2011) Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation. Geochem Trans 12(1):7

    Google Scholar 

  55. Zhu T, Dittrich M (2016) Carbonate precipitation through microbial activities in natural environment, and their potential in biotechnology: a review. Front Bioeng Biotechnol 4:4

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the helpful comments and discussions by Prof. Aydan Ömer, Prof. Eizo Nakaza, Dr. Kosaburo Hirose, and Mr. Ryogo Kawakami, University of the Ryukyus. This work was supported by the JSPS Grant-in-Aid for Young Scientists (B) Grant Number 26790079 and by the University of the Ryukyus Strategic Research Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hitoshi Matsubara.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsubara, H., Yamada, T. Mathematical modelling and simulation of microbial carbonate precipitation: the urea hydrolysis reaction. Acta Geotech. 15, 29–38 (2020). https://doi.org/10.1007/s11440-019-00896-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00896-6

Keywords

Navigation