Skip to main content
Log in

Deep tunnel fronts in cohesive soils under undrained conditions: a displacement-based approach for the design of fibreglass reinforcements

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The fronts of tunnels excavated under particularly difficult ground conditions by employing conventional tunnelling methods are commonly supported: the stabilization is usually achieved either by improving the mechanical properties of the soil (injections, jet grouting, soil freezing, etc.) or by introducing linear inclusions. This last technique, consisting in the introduction of pipes (usually made of fibreglass reinforced polymers) in the front, is particularly popular since it is very simple to adapt the reinforcement geometry, length and number to the different conditions encountered during the excavation. The design of this reinforcement technique is nowadays based on very simplified approaches: on either empirical formula or the limit equilibrium method. In a previous paper, the authors numerically studied the mechanical response of unreinforced fronts in cohesive soils and defined a non-dimensional front characteristic curve. In this paper, the authors intend to take into consideration the role of reinforcements by following the same approach. A procedure allowing the definition of the reinforced non-dimensional front characteristic curve, once the reinforcement pattern is assigned, is introduced. The practical use of this curve is described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23

Similar content being viewed by others

Abbreviations

a f :

Qf value defining the limit of the linear response of the reinforced characteristic curve

a fu :

Qf value defining the limit of the linear response of the unreinforced characteristic curve

D :

Tunnel diameter

d :

Reinforcement diameter

\( \overline{E} \) :

Relative reinforcement stiffness

E r :

Reinforcement Young modulus

E u :

Soil undrained Young modulus

H :

Tunnel cover

\( \overline{k} \) :

Initial (geostatic) stress anisotropy factor

L :

Reinforcement length

LSR:

Load sharing ratio [37]

N :

Reinforcement axial load

\( \overline{N} \) :

Reinforcement axial load associated with the complete soil–reinforcement interface yielding

N np :

Reinforcement axial load at the neutral point

N y :

Failure reinforcement axial load

n :

Reinforcement number

Q f :

Non-dimensional stress applied on the front [11] (Q*f = QfD/afL)

Q y :

Non-dimensional stress corresponding to the failure of the most loaded reinforcement (Q*y = QyD/afL)

q f :

Non-dimensional front displacement [11]

q f,r :

Residual (for σf = 0) non-dimensional front displacement

R 1 :

Function defining the influence on ΔR of the reinforcements length

R 2 :

Function defining the influence on ΔR of the reinforcements diameter and number

R 3 :

Function defining the influence on ΔR of the reinforcements relative stiffness

r1, r2, r3 :

Interpolating parameters

r :

Initial slope in the \( N_{\text{np}} /\overline{N} - Q_{\text{f}}^{*} \) plane

S u :

Undrained strength

u f :

Average front displacement

u f,adm :

Admissible front displacement

u fr,el :

Elastic residual (for σf = 0) front displacement [11]

x l :

Distance from the front (Fig. 3)

x r :

Distance from the front (Fig. 3)

γ sat :

Saturated soil unit weight

ΔQf :

Vertical distance between the reinforced and the unreinforced curves for large qf values

ΔR :

Increment in the initial stiffness with respect to the unreinforced case

η :

Reinforcement efficiency

ν u :

Undrained Poisson’s ratio

σ f :

Average stress applied on the front

σ f0 :

Initial geostatic value of σf

σ v :

Vertical stress applied to the lining

σ v0 :

Geostatic vertical stress applied to the lining

References

  1. Anagnostou G, Perazzelli P (2015) Analysis method and design charts for bolt reinforcement of the tunnel face in cohesive-frictional soils. Tunn Undergr Space Technol 47:162–181

    Article  Google Scholar 

  2. Ascione L, Berardi VP, D’Aponte A (2012) Creep phenomena in FRP materials. Mech Res Commun 43:15–21

    Article  Google Scholar 

  3. Augarde CE, Lyamin AV, Sloan SW (2003) Stability of an undrained plane strain heading revisited. Comput Geotech 30(5):419–430

    Article  Google Scholar 

  4. Benmokrane B, Chaallal O, Masmoudi R (1995) Glass fibre reinforced plastic (GFRP) rebars for concrete structures. Constr Build Mater 9(6):353–364

    Article  Google Scholar 

  5. Calvello M, Taylor RN (1999) Centrifuge modelling of a pile-reinforced tunnel heading. In: Proceedings of geotechnical aspect of underground construction in soft ground, Balkema, pp 313–318

  6. Carter JP, Booker JY, Yeung SK (1986) Cavity expansion in cohesive frictional soils. Géotechnique 36(3):349–358

    Article  Google Scholar 

  7. Cattoni E, Miriano C, Boco L, Tamagnini C (2016) Time-dependent ground movements induced by shield tunneling in soft clay: a parametric study. Acta Geotech 11:1385–1399

    Article  Google Scholar 

  8. Chen RP, Li J, Kong LG, Tang LJ (2013) Experimental study on face instability of shield tunnel in sand. Tunn Undergr Space Technol 33:12–21

    Article  Google Scholar 

  9. Davis EH, Gunn MJ, Mair RJ, Seneviratine HN (1980) The stability of shallow tunnels and underground openings in cohesive material. Géotechnique 30(4):397–416

    Article  Google Scholar 

  10. di Prisco C, Flessati L, Frigerio G, Castellanza R, Caruso M, Galli A, Lunardi P (2018) Experimental investigation of the time-dependent response of unreinforced and reinforced tunnel faces in cohesive soils. Acta Geotech 13(3):651–670

    Article  Google Scholar 

  11. di Prisco C, Flessati L, Frigerio G, Lunardi P (2018) A numerical exercise for the definition under undrained conditions of the deep tunnel front characteristic curve. Acta Geotech 13(3):635–649

    Article  Google Scholar 

  12. Fleming WGK, Weltman AJ, Randolph MF, Elson WK (1985) Piling engineering. Wiley, New York

    Google Scholar 

  13. Flessati L, di Prisco C (2018) Numerical investigation on the influence of the excavation rate on the mechanical response of deep tunnel fronts in cohesive soils. Springer series in geomechanics and geoengineering, pp 1140–1143. https://doi.org/10.1007/978-3-319-97115-5_55

  14. Freeman TJ (1978) The behaviour of fully-bonded rock bolts in the Kielder experimental tunnel. Tunn Tunn Int 10(5):37–40

    Google Scholar 

  15. Grasso P, Mahtab A, Pelizza S (1989) Reinforcing a rock zone for stabilizing a tunnel in complex formations. In: Proceeding of international congress progress innovation in tunnelling, Toronto, vol 2, pp 671–678

  16. Horn N (1961) Horizontaler erddruck auf senkrechte abschlussflächen von tunnelröhren. Landeskonferenz der ungarischen tiefbauindustrie, pp 7–16

  17. Juneja A, Hegde A, Lee FH, Yeo CH (2010) Centrifuge modelling of tunnel face reinforcement using forepoling. Tunn Undergr Space Technol 25(4):377–381

    Article  Google Scholar 

  18. Kamata H, Mashimo H (2003) Centrifuge model test of tunnel face reinforcement by bolting. Tunn Undergr Space Technol 18(2–3):205–212

    Article  Google Scholar 

  19. Klar A, Osman AS, Bolton M (2007) 2D and 3D upper bound solutions for tunnel excavation using ‘elastic’ flow fields. Int J Numer Anal Meth Geomech 31(12):1367–1374

    Article  Google Scholar 

  20. Lavasan AA, Zhao C, Barciaga T, Schaufler A, Steeb H, Schanz T (2018) Numerical investigation of tunneling in saturated soil: the role of construction and operation periods. Acta Geotech 13:671–691

    Article  Google Scholar 

  21. Leca E, Dormieux L (1990) Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique 40(4):581–606

    Article  Google Scholar 

  22. Leca E, Panet M (1988) Application du calcul à la rupture à la stabilité du front de taille d’un tunnel. Rev Fr Géotech 43:5–19

    Article  Google Scholar 

  23. Liu W, Shi P, Chen L, Tang Q (2018) Analytical analysis of working face passive stability during shield tunneling in frictional soils. Acta Geotech. https://doi.org/10.1007/s11440-018-0753-3

    Article  Google Scholar 

  24. Liu W, Zhao Y, Shi PX, Li JY, Gan PL (2018) Face stability analysis of shield-driven tunnels shallowly buried in dry sand using 1-g large-scale model tests. Acta Geotech 13:693–705

    Article  Google Scholar 

  25. Loni S, Stefanou I, Valvo PS (2013) Experimental study on the creep behavior of GFRP pultruded beams. In: AIMETA 2013–XXI Congresso Nazionale dell’Associazione Italiana di Meccanica Teorica e Applicata. Edizioni Libreria Cortina, pp 1–10

  26. Maksimov RD, Plume E (2001) Long-term creep of hybrid aramid/glass-fiber-reinforced plastics. Mech Compos Mater 37(4):271–280

    Article  Google Scholar 

  27. Mollon G, Dias D, Soubra AH (2009) Face stability analysis of circular tunnels driven by a pressurized shield. J Geotech Geoenviron Eng 136(1):215–229

    Article  Google Scholar 

  28. Mühlhaus HB (1985) Lower bound solutions for circular tunnels in two and three dimensions. Rock Mech Rock Eng 18(1):37–52

    Article  Google Scholar 

  29. Peila D (1994) A theoretical study of reinforcement influence on the stability of a tunnel face. Geotech Geol Eng 12(3):145–168

    Article  Google Scholar 

  30. Perazzelli P, Anagnostou G (2017) Analysis method and design charts for bolt reinforcement of the tunnel face in purely cohesive soils. J Geotech Geoenviron Eng 143(9):04017046

    Article  Google Scholar 

  31. Sadek M, Shahrour I (2004) A three dimensional embedded beam element for reinforced geomaterials. Int J Numer Anal Meth Geomech 28(9):931–946

    Article  Google Scholar 

  32. Shin JH, Choi YK, Kwon OY, Lee SD (2008) Model testing for pipe-reinforced tunnel heading in a granular soil. Tunn Undergr Space Technol 23(3):241–250

    Article  Google Scholar 

  33. Sloan SW (2013) Geotechnical stability analysis. Géotechnique 63(7):531–571

    Article  Google Scholar 

  34. Sloan SW, Assadi A (1994) Undrained stability of a plane strain heading. Can Geotech J 31(3):443–450

    Article  Google Scholar 

  35. Wong H, Subrin D, Dias D (2000) Extrusion movements of a tunnel head reinforced by finite length bolts—a closed-form solution using homogenization approach. Int J Numer Anal Meth Geomech 24(6):533–565

    Article  Google Scholar 

  36. Wong H, Trompille V, Dias D (2004) Extrusion analysis of a bolt-reinforced tunnel face with finite ground-bolt bond strength. Can Geotech J 41(2):326–341

    Article  Google Scholar 

  37. Yoo C, Shin HK (2003) Deformation behaviour of tunnel face reinforced with longitudinal pipes—laboratory and numerical investigation. Tunn Undergr Space Technol 18(4):303–319

    Article  Google Scholar 

  38. Yamaguchi T, Nishimura T, Uomoto T (1998) Creep rupture of FRP rods made of aramid, carbon and glass fibers. Struct Eng Constr Tradit Present Future 2:1331–1336

    Google Scholar 

Download references

Acknowledgements

This research was funded by Rocksoil S.P.A. and Maccaferri S.P.A. within the framework of an experimental/numerical program aimed at defining innovative design solutions for the front reinforcements by means of fibreglass tubes.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luca Flessati.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

di Prisco, C., Flessati, L. & Porta, D. Deep tunnel fronts in cohesive soils under undrained conditions: a displacement-based approach for the design of fibreglass reinforcements. Acta Geotech. 15, 1013–1030 (2020). https://doi.org/10.1007/s11440-019-00840-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-019-00840-8

Keywords

Navigation