Advertisement

Vertical vibration of piles in viscoelastic non-uniform soil overlying a rigid base

  • Shishun Gan
  • Changjie ZhengEmail author
  • George Kouretzis
  • Xuanming Ding
Short Communication
  • 41 Downloads

Abstract

This paper presents an analytical methodology that provides the dynamic response of an elastic pile embedded in viscoelastic non-uniform soil overlying a rigid base, when subjected to a harmonic vertical load. The non-uniform soil comprises two parts, featuring independent properties: the substratum soil, below the pile toe, is represented by a viscoelastic layer of finite thickness resting on rigid bedrock, while the soil surrounding the pile shaft is modelled as a series of infinitesimally thin independent viscoelastic layers. Following validation of the methodology, where we show that the presented solution degenerates to published solutions for simpler pile embedment conditions, we use results of a parametric investigation to discuss the mechanisms governing the dynamic response of the non-uniform soil–pile system. The presented solution allows modelling realistically the contribution of end-bearing resistance to vertical vibrations of piles in cases of practical interest when non-linearity effects can be effectively ignored.

Keywords

Dynamic impedance Piles Soil–structure interaction 

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51708064 and 51622803) and the Fundamental Research Funds for the Central Universities (No. 106112017CDJXY200002 and No. 106112016CDJXZ208821).

References

  1. 1.
    Ai ZY, Liu CL (2015) Vertical vibration of a pile in transversely isotropic multilayered soils. J Sound Vib 357:145–155CrossRefGoogle Scholar
  2. 2.
    Biot MA (1956) Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. J Acoust Soc Am 28(2):168–178MathSciNetCrossRefGoogle Scholar
  3. 3.
    Bishop RED, Johnson DC (1979) The mechanics of vibration. Cambridge University Press, EnglandzbMATHGoogle Scholar
  4. 4.
    Cai YQ, Hu XQ (2010) Vertical vibrations of a rigid foundation embedded in a poroelastic half space. J Eng Mech 136(3):390–398CrossRefGoogle Scholar
  5. 5.
    Cai YQ, Hu XQ, Xu CJ et al (2009) Vertical dynamic response of a rigid foundation embedded in a poroelastic soil layer. Int J Numer Anal Methods Geomech 33(11):1363–1388CrossRefzbMATHGoogle Scholar
  6. 6.
    Chau KT, Yang X (2005) Nonlinear interaction of soil–pile in horizontal vibration. J Eng Mech 131(8):847–858CrossRefGoogle Scholar
  7. 7.
    Fowler GF, Sinclair GB (1978) The longitudinal harmonic excitation of a circular bar embedded in an elastic half-space. Int J Solids Struct 14(12):999–1012CrossRefzbMATHGoogle Scholar
  8. 8.
    Guo WD (2000) Vertically loaded single piles in gibson soil. J Geotech Geoenviron Eng 126(2):189–193CrossRefGoogle Scholar
  9. 9.
    Hu XQ, Cai YQ, Wang J et al (2010) Rocking vibrations of a rigid embedded foundation in a poroelastic soil layer. Soil Dyn Earthq Eng 30(4):280–284CrossRefGoogle Scholar
  10. 10.
    Jin B, Liu H (1999) Vertical dynamic response of a disk on a saturated poroelastic half-space. Soil Dyn Earthq Eng 18(6):437–443CrossRefGoogle Scholar
  11. 11.
    Kraft LM, Ray RP, Kagawa T (1981) Theoretical tz curves. J Geotech Eng Div 107(GT11):1543–1561Google Scholar
  12. 12.
    Luco JE, Westman RA (1971) Dynamic response of circular footings. J Eng Mech Div ASCE 97(1):1381–1395Google Scholar
  13. 13.
    Luco JE, Westmann RA (1972) Dynamic response of a rigid footing bonded to an elastic half space. J Appl Mech 39(2):527–534CrossRefGoogle Scholar
  14. 14.
    Militano G, Rajapakse RKND (1999) Dynamic response of a pile in a multi-layered soil to transient torsional and axial loading. Geotechnique 49(1):91–109CrossRefGoogle Scholar
  15. 15.
    Nobel B (1963) The solution of Bessel-function dual integral equations by a multiplying-factor method. Math Proc Camb Philos Soc 59(2):351–362MathSciNetCrossRefGoogle Scholar
  16. 16.
    Novak M (1974) Dynamic stiffness and damping of piles. Can Geotech J 11(4):575–598CrossRefGoogle Scholar
  17. 17.
    Novak M, Aboulella F (1978) Impedance functions of piles in layered medium. J Eng Mech Div 104:643–661Google Scholar
  18. 18.
    Novak M, Nogami T (1977) Soil–pile interaction in horizontal vibration. Earthq Eng Struct Dyn 5:263–282CrossRefGoogle Scholar
  19. 19.
    Sneddon I (1970) The use of integral transforms. McGraw-Hill, New YorkzbMATHGoogle Scholar
  20. 20.
    Takemiya H, Yamada Y (1981) Layered soil–pile-structure dynamic interaction. Earthq Eng Struct Dyn 9:437–457CrossRefGoogle Scholar
  21. 21.
    Wang G, Sitar N (2011) Static and dynamic axial response of drilled piers. II: Numerical simulation. J Geotech Geoenviron Eng 137(12):1143–1153CrossRefGoogle Scholar
  22. 22.
    Wu WB, Liu H, El Naggar MH et al (2016) Torsional dynamic response of a pile embedded in layered soil based on the fictitious soil pile model. Comput Geotech 80:190–198CrossRefGoogle Scholar
  23. 23.
    Wu WB, Xu XL, Liu H et al (2017) Vertical vibration characteristics of a variable impedance pile embedded in layered soil. Math Probl Eng 1–11:1794950MathSciNetGoogle Scholar
  24. 24.
    Zheng CJ, George PK, Scott WS et al (2015) Vertical vibrations of an elastic pile embedded in poroelastic soil. Soil Dyn Earthq Eng 77:177–181CrossRefGoogle Scholar
  25. 25.
    Zheng CJ, Ding XM, Li P et al (2015) Vertical impedance of an end-bearing pile in viscoelastic soil. Int J Numer Anal Methods Geomech 39:676–684CrossRefGoogle Scholar
  26. 26.
    Zheng CJ, Gan SS, Ding XM et al (2017) Dynamic response of a pile embedded in elastic half space subjected to harmonic vertical loading. Acta Menchanica Solida Sinica 30(6):668–673CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Shishun Gan
    • 1
    • 2
    • 3
  • Changjie Zheng
    • 1
    • 2
    • 3
    Email author
  • George Kouretzis
    • 4
  • Xuanming Ding
    • 3
  1. 1.School of Civil EngineeringFujian University of TechnologyFuzhouChina
  2. 2.Fujian Provincial Key Laboratory of Advanced Technology and Informatization in Civil EngineeringFuzhouChina
  3. 3.Key Laboratory of New Technology for Construction of Cities in Mountain Area, College of Civil EngineeringChongqingChina
  4. 4.Priority Research Centre for Geotechnical Science and Engineering, Faculty of Engineering and Built EnvironmentThe University of NewcastleCallaghanAustralia

Personalised recommendations