Predicting undrained static response of sand with non-plastic fines in terms of equivalent granular state parameter

Abstract

The influence of non-plastic fines on undrained monotonic behaviour of sand was investigated over a wide range of fines content (FC = 0–40%), global void ratio and initial mean effective stress (\( p_{0}^{\prime } \) = 100 kPa to 500 kPa), by performing triaxial compression tests with isotropic and anisotropic consolidation. For the sand–silt mixtures, steady-state line in the e − log(p′) space was found to be dependent on fines content with the existence of a limiting fines content, which defines the transition from a “fines in sand” to a “sand in fines” soil fabric. It is demonstrated that by means of the concept of equivalent granular void ratio, e*, all steady-state/critical state data points can be well described by a unique relationship in the e* − log(p′) space called the equivalent steady-state line (EG-SSL), regardless of fines content. The equivalent granular state parameter (ψ*), defined in terms of e*, and the EG-SSL can be effectively adopted for predicting the undrained monotonic behaviour of sand–silt mixtures and the onset of static instability, irrespective of fines content and initial state of the sand–silt mixtures.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

References

  1. 1.

    ASTM D4253 (2000) Standard test methods for maximum index density and unit weight of soils using a vibratory table. American Society of Testing and Materials, annual book of ASTM standards, 1–14

  2. 2.

    ASTM D4254 (2000) Standard test methods for minimum index density and unit weight of and calculation of relative density. American Society of Testing and Materials, annual book of ASTM standards, 1–9

  3. 3.

    Been K, Jefferies MG (1985) A state parameter for sands. Geotechnique 35(2):99–112. https://doi.org/10.1680/geot.1985.35.2.99

    Article  Google Scholar 

  4. 4.

    Been K, Jefferies MG, Hachey J (1991) The critical state of sands. Geotechnique 41(3):365–381. https://doi.org/10.1680/geot.1991.41.3.365

    Article  Google Scholar 

  5. 5.

    Benahmed N, Nguyen T, Hicher P, Nicolas M (2015) An experimental investigation into the effects of low plastic fines content on the behaviour of sand/silt mixtures. Eur J Environ Civ Eng 19:109–128. https://doi.org/10.1080/19648189.2014.939304

    Article  Google Scholar 

  6. 6.

    Bobei DC, Lo SR, Wanatowski D, Gnanendran CT, Rahman MM (2009) A modified state parameter for characterizing static liquefaction of sand with fines. Can Geotech J 46(3):281–295. https://doi.org/10.1139/T08-122

    Article  Google Scholar 

  7. 7.

    Carraro JAH, Murthy TG, Loukidis D, Salgado R, Prezzi M (2007) Undrained monotonic response of clean and silty sands. Géotechnique 57(3):273–288. https://doi.org/10.1680/geot.2007.57.3.273

    Article  Google Scholar 

  8. 8.

    Castro G, Poulos SJ (1977) Factors affecting liquefaction and cyclic mobility. J Geotech Eng Div ASCE 103(GT6):501–516

    Google Scholar 

  9. 9.

    Chu J, Leong WK (2002) Effect of fines on instability behaviour of loose sand. Geotechnique 52(10):751–755. https://doi.org/10.1680/geot.2002.52.10.751

    Article  Google Scholar 

  10. 10.

    Dash HK, Sitharam TG (2011) Undrained monotonic response of sand-silt mixtures: effects of non-plastic fines. Geomech Geoeng Int J 6(1):47–58. https://doi.org/10.1080/17486021003706796

    Article  Google Scholar 

  11. 11.

    Diano V (2017) Influence of non-plastic fines on the undrained monotonic and cyclic behaviour of silty sands. PhD thesis, Mediterranean University of Reggio Calabria, Italy

  12. 12.

    Finno RJ, Rechenmacher AL (2003) Effects of consolidation history on critical state of sand. J Geotech Geoenviron Eng 129(4):350–360. https://doi.org/10.1061/(ASCE)1090-0241(2003)129:4(350)

    Article  Google Scholar 

  13. 13.

    Forie AB, Tshabalala L (2005) Initiation of static liquefaction and the role of K0 consolidation. Can Geotech J 42(3):892–906. https://doi.org/10.1139/t05-026

    Article  Google Scholar 

  14. 14.

    Hazirbaba K (2005) Pore pressure generation characteristics of sands and silty sands: a strain approach. PhD Thesis, University of Texas, Austin, p 232

  15. 15.

    Huang YT, Huang AB, Chen KY, Dou TM (2004) A laboratory study on the undrained strength of a silty sand from central western Taiwan. J Soil Dyn Earthq Eng 24(9–10):733–743. https://doi.org/10.1016/j.soildyn.2004.06.013

    Article  Google Scholar 

  16. 16.

    Ishihara K (1993) Liquefaction and flow failure during earthquakes. Geotechnique 43(3):351–415. https://doi.org/10.1680/geot.1993.43.3.351

    MathSciNet  Article  Google Scholar 

  17. 17.

    Karim ME, Alam MJ (2016) Undrained monotonic and cyclic response of sand–silt mixtures. Int J Geotech Eng 10(3):223–235. https://doi.org/10.1179/1939787915Y.0000000023

    Article  Google Scholar 

  18. 18.

    Karim ME, Alam MJ (2017) Effect of nonplastic silt content on undrained shear strength of sand–silt mixtures. Int J Geo-Eng 8:14. https://doi.org/10.1186/s40703-017-0051-1

    Article  Google Scholar 

  19. 19.

    Kato S, Ishihara K, Towhata I (2001) Undrained shear characteristics of saturated sand under anisotropic consolidation. Soils Found 41(1):1–11. https://doi.org/10.3208/sandf.41.1

    Article  Google Scholar 

  20. 20.

    Lade PV (1992) Static instability and liquefaction of loose fine sandy slopes. J Geotech Geoenviron Eng 118(1):51–71. https://doi.org/10.1061/(ASCE)0733-9410(1992)118:1(51)

    Article  Google Scholar 

  21. 21.

    Lade PV, Yamamuro JA (1997) Effects of non-plastic fines on static liquefaction of sands. Can Geotech J 34(6):918–928. https://doi.org/10.1139/t97-052

    Article  Google Scholar 

  22. 22.

    Lade PV, Liggio CD, Yamamuro JA (1998) Effects of non-plastic fines on minimum and maximum void ratios of sand. Geotech Test J 21(4):336–347. https://doi.org/10.1520/GTJ11373J

    Article  Google Scholar 

  23. 23.

    Lashkari A (2016) Prediction of flow liquefaction instability of clean and silty sands. Acta Geotech 11(5):987–1014. https://doi.org/10.1007/s11440-015-0413-9

    MathSciNet  Article  Google Scholar 

  24. 24.

    Lee KL, Seed HB (1967) Drained strength characteristics of sands. J Soil Mech Found Div 93(SM6):117–141

    Google Scholar 

  25. 25.

    McGeary RK (1961) Mechanical packing of spherical particles. J Am Ceram Soc 44(10):513–522

    Article  Google Scholar 

  26. 26.

    Murthy TG, Loukidis D, Carraro JAH, Prezzi M, Salgado R (2007) Undrained monotonic response of clean and silty sands. Geotechnique 57(3):273–288. https://doi.org/10.1680/geot.2007.57.3.273

    Article  Google Scholar 

  27. 27.

    Naeini SA, Baziar MH (2004) Effect of fines content on steady-state strength of mixed and layered samples of a sand. Soil Dyn Earthq Eng 24(3):181–187. https://doi.org/10.1016/j.soildyn.2003.11.003

    Article  Google Scholar 

  28. 28.

    Ni Q, Tan TS, Dasari GR, Hight DW (2004) Contribution of fines to the compressive strength of mixed soils. Geotechnique 54(9):561–569. https://doi.org/10.1680/geot.2004.54.9.561

    Article  Google Scholar 

  29. 29.

    Papadopoulou A, Tika T (2008) The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils Found 48:713–725. https://doi.org/10.3208/sandf.48.713

    Article  Google Scholar 

  30. 30.

    Phan VTA, Hsiao DH, Nguyen PTL (2016) Effects of fines contents on engineering properties of sand-fines mixtures. Proc Eng 142:213–220. https://doi.org/10.1016/j.proeng.2016.02.034

    Article  Google Scholar 

  31. 31.

    Porcino DD, Diano V (2017) The influence of non-plastic fines on pore water pressure generation and undrained shear strength of sand-silt mixtures. Soil Dyn Earthq Eng 101:311–321. https://doi.org/10.1016/j.soildyn.2017.07.015

    Article  Google Scholar 

  32. 32.

    Rabbi ATMZ, Rahman M, Cameron DA (2018) Undrained behavior of silty sand and the role of isotropic and K0 consolidation. J Geotech Geoenviron Eng 144(4):04018014. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001859

    Article  Google Scholar 

  33. 33.

    Rahman MM, Lo SR (2008) The prediction of equivalent granular steady state line of loose sand with fines. Geomech Geoeng 3(3):179–190. https://doi.org/10.1080/17486020802206867

    Article  Google Scholar 

  34. 34.

    Rahman MM, Lo SR (2012) Predicting the onset of static liquefaction of loose sand with fines. J Geotech Geoenviron Eng 138(8):1037–1041. https://doi.org/10.1111/j.1151-2916.1961.tb13716.x

    Article  Google Scholar 

  35. 35.

    Rahman MM, Lo SR (2014) Undrained behaviour of sand-fines mixtures and their parameter. J Geotech Geoenviron Eng 140(7):04014036. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001115

    Article  Google Scholar 

  36. 36.

    Rahman MM, Lo SR, Baki MAL (2011) Equivalent granular state parameter and undrained behaviour of sand-fines mixtures. Acta Geotech 6(4):183–194. https://doi.org/10.1007/s11440-011-0145-4

    Article  Google Scholar 

  37. 37.

    Rahman MM, Lo SR, Dafalias YF (2014) Modelling the static liquefaction of sand with low-plasticity fines. Geotechnique 64(1):881–894. https://doi.org/10.1680/geot.14.P.079

    Article  Google Scholar 

  38. 38.

    Rees S (2010) Effects of fines on the undrained behaviour of Christchurch sandy soils. PhD thesis, University of Canterbury, Christchurch, New Zealand

  39. 39.

    Riemer MF, Seed RB (1997) Factors affecting apparent position of steady-state line. J Geotech Geoenviron Eng 123(3):281–288. https://doi.org/10.1061/(ASCE)1090-0241(1997)123:3(281)

    Article  Google Scholar 

  40. 40.

    Sladen JA, D’Hollander RD, Krahn J (1985) The liquefaction of sands, a collapse surface approach. Can Geotech J 22(4):564–578. https://doi.org/10.1139/t85-076

    Article  Google Scholar 

  41. 41.

    Thevanayagam S (1998) Effect of fines and confining stress on undrained shear strength of silty sands. J Geotech Geoenviron Eng 124(6):479–491. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(479)

    Article  Google Scholar 

  42. 42.

    Thevanayagam S (2007) Intergrain contact density indices for granular mixes-I: framework. Earthq Eng Eng Vib 6(2):123–134. https://doi.org/10.1007/s11803-007-0705-7

    Article  Google Scholar 

  43. 43.

    Thevanayagam S, Shenthan T, Mohan S, Liang J (2002) Undrained fragility of clean sands, silty sands, and sandy silts. J Geotech Geoenviron Eng 128(10):849–859. https://doi.org/10.1061/(ASCE)1090-0241(2002)128:10(849)

    Article  Google Scholar 

  44. 44.

    Yamamuro JA, Lade PV (1997) Static liquefaction of very loose sands. Can Geotech J 34:905–917

    Article  Google Scholar 

  45. 45.

    Yamamuro JA, Lade PV (1998) Steady-state concepts and static liquefaction of silty sands. J Geotech Geoenviron Eng 124(9):868–877. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:9(868)

    Article  Google Scholar 

  46. 46.

    Yang J, Wei LM (2012) Collapse of loose sand with the addition of fines: the role of particle shape. Géotechnique 62(12):111–1125. https://doi.org/10.1680/geot.11.P.062

    Article  Google Scholar 

  47. 47.

    Yang SL, Sandven R, Grande L (2006) Steady-state lines of sand-silt mixtures. Can Geotech J 43(11):1213–1219. https://doi.org/10.1139/t06-069

    Article  Google Scholar 

  48. 48.

    Yang J, Wei LM, Dai BB (2015) State variables for silty sands: global void ratio or skeleton void ratio? Soils Found 55(1):99–111. https://doi.org/10.1016/j.sandf.2014.12.008

    Article  Google Scholar 

  49. 49.

    Zuo L, Baudet BA (2015) Determination of the transitional fines content of sand-non plastic fines mixtures. Soils Found 55(1):213–219. https://doi.org/10.1016/j.sandf.2014.12.017

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to D. D. Porcino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Porcino, D.D., Diano, V., Triantafyllidis, T. et al. Predicting undrained static response of sand with non-plastic fines in terms of equivalent granular state parameter. Acta Geotech. 15, 867–882 (2020). https://doi.org/10.1007/s11440-019-00770-5

Download citation

Keywords

  • Critical state
  • Equivalent granular state parameter
  • Instability
  • Non-plastic fines
  • Sands