Skip to main content
Log in

Thermo-mechanical performance of layered transversely isotropic media around a cylindrical/tubular heat source

  • Research Paper
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

We develop a new numerical model based on a precise integration method to investigate the coupled thermo-mechanical performance of layered transversely isotropic media around a cylindrical/tubular heat source. To obtain the relational matrices of the extended precise integration method, we first convert the governing equations of the problem into ordinary differential matrix equations through the Laplace–Hankel transform. Then, the cylindrical heat source is divided into a series of plane heat sources, and the plane temperature load term is added to the state vector between layer elements. By combining the layer elements, we build a layered transversely isotropic numerical model containing a cylindrical heat source in the transformed domain. Finally, we solve the model in the transformed domain and obtain the solution of the problem in the real domain through the Laplace–Hankel transform inversion. The accuracy of this method is verified by comparing the solutions with the results of the analytical method and the finite element method. Then, we study the influence of the anisotropy of thermal parameters, the embedded depth, the length/radius ratio, the type of heat source and the stratification of the medium on the thermo-mechanical coupled performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Abate J, Valko PP (2004) Multi-precision laplace transform inversion. Int J Numer Methods Eng 60(5):979–993

    Article  MATH  Google Scholar 

  2. Ai ZY, Wang LJ (2018) Precise Solution to 3D Coupled thermohydromechanical problems of layered transversely isotropic saturated porous media. Int J Geomech 18(1):04017121

    Article  Google Scholar 

  3. Ai ZY, Wang LJ, Li B (2015) Analysis of axisymmetric thermo-elastic problem in multilayered material with anisotropic thermal diffusivity. Comput Geotech 65:80–86

    Article  Google Scholar 

  4. Ai ZY, Wu QL, Wang LJ (2016) Axisymmetric coupled thermo-mechanical response of multilayered elastic medium. Meccanica 51(6):1405–1417

    Article  MathSciNet  MATH  Google Scholar 

  5. Ai ZY, Wu QL, Wang LJ (2016) Extended precise integration method for axisymmetric thermo-elastic problem in transversely isotropic material. Int J Numer Anal Methods Geomech 40(2):297–312

    Article  Google Scholar 

  6. Ai ZY, Yue ZQ, Tham LG, Yang M (2002) Extended Sneddon and Muki solutions for multilayered elastic materials. Int J Eng Sci 40(13):1453–1483

    Article  MathSciNet  MATH  Google Scholar 

  7. Ai ZY, Zhao Z, Wang LJ (2017) Thermo-mechanical coupling response of a layered isotropic medium around a cylindrical heat source. Comput Geotech 83:159–167

    Article  Google Scholar 

  8. Amatya BL, Soga K, Bourne-Webb PJ, Amis T, Laloui L (2012) Thermo-mechanical behaviour of energy piles. Géotechnique 62(6):503–519

    Article  Google Scholar 

  9. Ashida FNN, Okumura IA (1993) General solution technique for transient thermoelasticity of transversely isotropic solids in cylindrical coordinates. Acta Mech 101(1–4):215–230

    Article  MathSciNet  MATH  Google Scholar 

  10. Bai B (2005) Approximate solution of thermal consolidation of cylindrical heat source with infinite length for saturated soils. Chin J Rock Mech Eng 24(6):1004–1009 (in Chinese)

    Google Scholar 

  11. Biot MA (1956) Thermoelasticity and irreversible thermodynamics. J Appl Phys 27(3):240–253

    Article  MathSciNet  MATH  Google Scholar 

  12. Booker JR, Carter JP (1984) Steady state response of elastic ground containing a heat source. In: The 9th Australasian conference on the mechanics of structures and materials, pp 86–91

  13. Carter JP, Booker JR (1989) Finite element analysis of coupled thermoelasticity. Comput Struct 31(1):73–80

    Article  Google Scholar 

  14. Carter JP, Booker JR (1985) Thermomechanical analysis of some proposed schemes for radioactive waste disposal. In: Fifth international conference on numerical methods in geomechanics, Nagoya, pp 1249–1256

  15. Geng LT, Ren RB, Zhong Y, Xu Q (2011) Thermal stresses of flexible pavement with consideration of temperature-dependent material characteristics using stiffness matrix method. Mech Time Depend Mater 15(1):73–87

    Article  Google Scholar 

  16. Gu Y, O’Neal DL (1995) An analytical solution to transient heat conduction in a composite region with a cylindrical heat source. J Sol Energy Eng 117(3):242–248

    Article  Google Scholar 

  17. Haji-Sheikh A, Beck JV (2002) Temperature solution in multi-dimensional multi-layer bodies. Int J Heat Mass Transf 45(9):1865–1877

    Article  MATH  Google Scholar 

  18. Haji-Sheikh A, Beck JV, Agonafer D (2003) Steady-state heat conduction in multi-layer bodies. Int J Heat Mass Transf 46(13):2363–2379

    Article  MATH  Google Scholar 

  19. Hematiyan MR, Mohammadi M, Marin L, Khosravifard A (2011) Boundary element analysis of uncoupled transient thermo-elastic problems with time- and space-dependent heat sources. Appl Math Comput 218(5):1862–1882

    MathSciNet  MATH  Google Scholar 

  20. Hou PF, Leung AYT, Chen CP (2010) Green’s functions for semi-infinite transversely isotropic thermoelastic materials. Zamm J Appl Math Mech 88(1):33–41

    Article  MathSciNet  MATH  Google Scholar 

  21. Hughes TJR (2000) The finite element method: linear static and dynamic finite element analysis. Dover Publications, Mineola

    MATH  Google Scholar 

  22. Keramidas GA, Ting EC (1976) A finite element formulation for thermal stress analysis. Part I: variational formulation. Nucl Eng Des 39(2–3):267–275

    Article  Google Scholar 

  23. Keramidas GA, Ting EC (1976) A finite element formulation for thermal stress analysis. Part II: finite element formulation. Nucl Eng Des 39(2):277–287

    Article  Google Scholar 

  24. Laloui L, Nuth M, Vulliet L (2006) Experimental and numerical investigations of the behaviour of a heat exchanger pile. Int J Numer Anal Meth Geomech 30(8):763–781

    Article  Google Scholar 

  25. Man Y, Yang HX, Diao NR, Liu JH, Fang ZH (2010) A new model and analytical solutions for borehole and pile ground heat exchangers. Int J Heat Mass Transf 53(13–14):2593–2601

    Article  MATH  Google Scholar 

  26. Mohammadi M, Hematiyan MR, Aliabadi MH (2003) A boundary elements pseudo heat source method formulation for inverse analysis of solidification problems. Comput Mech 31(3–4):262–271

    Google Scholar 

  27. Naeeni MR, Eskandari-Ghadi M, Ardalan AA, Pak RYS, Rahimian M, Hayati Y (2015) Coupled thermoviscoelastodynamic Green’s functions for bi-material half-space. Zamm Z Angew Math Mech 95(3):262–280

    Article  MathSciNet  MATH  Google Scholar 

  28. Naeeni MR, Eskandari-Ghadi M, Ardalan AA, Rahimian M, Hayati Y (2013) Analytical solution of coupled thermoelastic axisymmetric transient waves in a transversely isotropic half-space. J Appl Mech Trans ASME 80(2):024502

    Article  Google Scholar 

  29. Naeeni MR, Eskandari-Ghadi M, Ardalan AA, Sture S, Rahimian M (2015) Transient response of a thermoelastic half-space to mechanical and thermal buried sources. Zamm Z Angew Math Mech 95(4):354–376

    Article  MathSciNet  MATH  Google Scholar 

  30. Pan E (1990) Thermoelastic deformation of a transversely isotropic and layered half-space by surface loads and internal sources. Phys Earth Planet Inter 60(1):254–264

    Article  Google Scholar 

  31. Rizzo FJ, Shippy DJ (1977) An advanced boundary integral equation method for three-dimensional thermoelasticity. Int J Numer Methods Eng 11(11):1753–1768

    Article  MATH  Google Scholar 

  32. Semnani SJ, White JA, Borja RI (2016) Thermoplasticity and strain localization in transversely isotropic materials based on anisotropic critical state plasticity. Int J Numer Anal Methods Geomech 40(18):2423–2449

    Article  Google Scholar 

  33. Seneviratne HN, Carter JP, Booker JR (1994) Analysis of fully coupled thermomechanical behaviour around a rigid cylindrical heat source buried in clay. Int J Numer Anal Methods Geomech 18(3):177–203

    Article  MATH  Google Scholar 

  34. Small JC, Booker JR (1986) The behaviour of layered soil or rock containing a decaying heat source. Int J Numer Anal Meth Geomech 10(5):501–519

    Article  MATH  Google Scholar 

  35. Small JC, Booker JR (1989) The effects of a decaying heat source in a rectangular-shaped rock repository. J Energy Resour Technol Trans ASME 111(4):264–269

    Article  Google Scholar 

  36. Smith DW, Booker JR (1989) Boundary integral analysis of transient thermoelasticity. Int J Numer Anal Methods Geomech 13(3):283–302

    Article  MATH  Google Scholar 

  37. Sneddon IN (1972) The use of integral transforms. McGraw-Hill, New York

    MATH  Google Scholar 

  38. Song X, Wang KQ, Bate B (2018) A hierarchical thermo-hydro-plastic constitutive model for unsaturated soils and its numerical implementation. Int J Numer Anal Meth Geomech 42(15):1785–1805

    Article  Google Scholar 

  39. Song X, Wang KQ, Ye M (2017) Localized failure in unsaturated soils under non-isothermal conditions. Acta Geotech 13(3):1–13

    Google Scholar 

  40. Wang LJ, Ai ZY (2015) Plane strain and three-dimensional analyses for thermo-mechanical behavior of multilayered transversely isotropic materials. Int J Mech Sci 103:199–211

    Article  Google Scholar 

  41. Wang LJ, Ai ZY (2018) Transient thermal response of a multilayered geomaterial subjected to a heat source. KSCE J Civ Eng 22(9):3292–3301

    Article  Google Scholar 

  42. Wang LJ, Ai ZY (2018) Quasi-static thermal analyses of layered compressible poroelastic materials with a finite depth or half-space. Appl Math Model 59:272–292

    Article  MathSciNet  Google Scholar 

  43. Wang B, Bouazza A, Haberfield C (2011) Preliminary observations from laboratory scale model geothermal pile subjected to thermal-mechanical loading. Geo Front Congr 211:430–439

    Google Scholar 

  44. Wong W, Zhong Y (2000) Flexible pavement thermal stresses with variable temperature. J Transp Eng ASCE 126(1):46–49

    Article  Google Scholar 

  45. Yavari N, Tang AM, Pereira JM, Hassen G (2014) Experimental study on the mechanical behaviour of a heat exchanger pile using physical modelling. Acta Geotech 9(3):385–398

    Article  Google Scholar 

  46. Yue ZQ (1988) Solution for the thermoelastic problem in vertically inhomogeneous media. Acta Mech Sin 4(2):182–189

    Article  MATH  Google Scholar 

  47. Zhan GH, Yu YN (2011) Finite long cylindrical surface and cylinder source model of ground source heat pump. J Zhejiang Univ 45(6):1104–1107 (in Chinese)

    Google Scholar 

  48. Zhong WX (1997) A new solution system for elastic mechanics. Dalian University of Technology Press, Dalian

    Google Scholar 

  49. Zhong Y, Geng LT (2010) Thermal stress and fracture temperature prediction for flexible pavement. J Harbin Inst Technol 17(6):867–872

    Google Scholar 

  50. Zienkiewicz OC (1989) The finite element method in engineering science. McGraw-Hill, New York

    Google Scholar 

Download references

Acknowledgements

This research is supported by the National Natural Science Foundation of China (Grant Nos. 51639008 and 41672275).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhi Yong Ai.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ai, Z.Y., Ye, Z., Song, X. et al. Thermo-mechanical performance of layered transversely isotropic media around a cylindrical/tubular heat source. Acta Geotech. 14, 1143–1160 (2019). https://doi.org/10.1007/s11440-018-0722-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0722-x

Keywords

Navigation