Skip to main content
Log in

Bearing capacity of strip footings on cφ soils with square voids

  • Short Communication
  • Published:
Acta Geotechnica Aims and scope Submit manuscript

Abstract

The presence of underground voids has an adverse influence on the performance of shallow foundations. In this study, the bearing capacity and failure mechanism of footings placed on cohesive-frictional soils with voids are evaluated using discontinuity layout optimization. By introducing a reduction coefficient, a set of design charts that can be directly applied to the classical bearing capacity formulation is presented. The results indicate that the undrained bearing capacity with voids is sensitive to soil weight and cohesion, as both the bearing capacity and stability issues exist in the problem. The failure mechanism is directly related to a variety of soil properties, the locations of single voids, and the horizontal distance between two voids. The presence of voids has a more dominant effect on cφ soils compared to that on undrained soil. An interpretation of the critical and adverse locations for single-void and dual-void cases with various soil strengths is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. AASHTO (American Association of State Highway and Transportation Officials) (2012) Standard specifications for highway bridges. LRFD bridge design specifications. Washington, DC

  2. Al-Tabbaa A, Russell L, O’Reilly M (1989) Model tests of footings above shallow cavities. Ground Eng 22(7):39–42

    Google Scholar 

  3. Augarde CE, Lyamin AV, Sloan SW (2003) Prediction of undrained sinkhole collapse. J Geotech Geoenviron Eng 129(3):197–205

    Article  Google Scholar 

  4. Baus R, Wang M (1983) Bearing capacity of strip footing above void. J Geotech Eng 109:1–14

    Article  Google Scholar 

  5. Badie A, Wang M (1984) Stability of spread footing above void in clay. J Geotech Eng 110(11):1591–1605

    Article  Google Scholar 

  6. Chen WF (1975) Limit analysis and soil plasticity. Elsevier, Amsterdam

    MATH  Google Scholar 

  7. Craig WH (1990) ‘Collapse of cohesive overburden following removal of support’. Can Geotech J 27:355–364

    Article  Google Scholar 

  8. Griffiths DV (1982) Computation of bearing capacity factors using finite elements. Geotechnique 32(3):195–202

    Article  Google Scholar 

  9. Griffiths DV (2015) Observations on load and strength factors in bearing capacity analysis. J Geotech Geoenviron Eng 141(7):06015004

    Article  Google Scholar 

  10. Hjiaj M, Lyamin A, Sloan S (2005) Numerical limit analysis solutions for the bearing capacity factor N γ. Int J Solids Struct 42(5–6):1681–1704

    Article  MATH  Google Scholar 

  11. Kiyosumi M, Kusakabe O, Ohuchi M, Le Peng F (2007) Yielding pressure of spread footing above multiple voids. J Geotech Geoenviron Eng 133(12):1522–1531

    Article  Google Scholar 

  12. Kiyosumi M, Kusakabe O, Ohuchi M (2011) Model tests and analyses of bearing capacity of strip footing on stiff ground with voids. J Geotech Geoenviron Eng 137(4):363–375

    Article  Google Scholar 

  13. Lee JK, Jeong S, Ko J (2014) Undrained stability of surface strip footings above voids. Comput Geotech 62:128–135

    Article  Google Scholar 

  14. Lee JK, Jeong S, Ko J (2015) Effect of load inclination on the undrained bearing capacity of surface spread footings above voids. Comput Geotech 66:245–252

    Article  Google Scholar 

  15. Leshchinsky B (2015) Bearing capacity of footings placed adjacent to c′–ϕ′ slopes. J Geotech Geoenviron Eng 141(6):04015022

    Article  Google Scholar 

  16. LimitState. (2013) LimitState: geo manual v 3.0, Sheffield, UK

  17. Lyamin A, Salgado R, Sloan SW, Prezzi M (2007) Two- and three dimensional bearing capacity of footings in sand. Géotechnique 57(8):647–662

    Article  Google Scholar 

  18. Michalowski R (1997) An estimate of the influence of soil weight on bearing capacity using limit analysis. Soils Found 37(4):57–64

    Article  Google Scholar 

  19. Prandtl L (1921) Hauptaufsätze: Über die eindringungsfestigkeit (härte) plastischer baustoffe und die festigkeit von schneiden. ZAMM-J Appl Math Mech 1(1):15–20 (in German)

    Article  MATH  Google Scholar 

  20. Sloan S (1989) Upper bound limit analysis using finite elements and linear programming. Int J Numer Anal Methods Geomech 13(3):263–282

    Article  MATH  Google Scholar 

  21. Smith C, Gilbert M (2007) Application of discontinuity layout optimization to plane plasticity problems. Proc R Soc A 463(2086):2461–2484

    Article  MathSciNet  MATH  Google Scholar 

  22. Smith C, Gilbert M (2013) Identification of rotational failure mechanisms in cohesive media using discontinuity layout optimization. Geotechnique 63(14):1194–1208

    Article  Google Scholar 

  23. Soubra AH (1999) Upper-bound solutions for bearing capacity of foundations. J Geotech Geoenviron Eng 125(1):59–68

    Article  Google Scholar 

  24. Ukritchon B, Whittle AJ, Klangvijit C (2003) Calculations of bearing capacity factor N γ using numerical limit analyses. J Geotech Geoenviron Eng 129(5):468–474

    Article  Google Scholar 

  25. Vesic AS (1975) Bearing capacity of shallow foundations. Found Eng Handb 1975:121–147

    Google Scholar 

  26. Wang M, Badie A (1985) Effect of underground void on foundation stability. J Geotech Eng 111(8):1008–1019

    Article  Google Scholar 

  27. Wang L, Leshchinsky B, Evans TM, Xie Y (2015) Active and passive arching stresses in c′–φ′ soils: a sensitivity study using computational limit analysis. Comput Geotech 84:47–57

    Article  Google Scholar 

  28. Wilson DW, Abbo AJ, Sloan SW, Lyamin AV (2015) Undrained stability of dual square tunnels. Acta Geotech 10(5):665–682

    Article  Google Scholar 

  29. Zhou H, Zheng G, Yin X, Jia R, Yang X (2018) The bearing capacity and failure mechanism of a vertically loaded strip footing placed on the top of slopes. Comput Geotech 94:12–21

    Article  Google Scholar 

Download references

Acknowledgements

This research was funded by the National Natural Science Foundation of China (Grant Nos. 51378345 and 41630641). The authors appreciate the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Zheng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, H., Zheng, G., He, X. et al. Bearing capacity of strip footings on cφ soils with square voids. Acta Geotech. 13, 747–755 (2018). https://doi.org/10.1007/s11440-018-0630-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11440-018-0630-0

Keywords

Navigation