Advertisement

Acta Geotechnica

, Volume 13, Issue 2, pp 303–316 | Cite as

SPH approach for simulating hydro-mechanical processes with large deformations and variable permeabilities

  • M. Gholami Korzani
  • S. A. Galindo-Torres
  • A. Scheuermann
  • D. J. Williams
Research Paper

Abstract

A simulation framework based on Smoothed Particle Hydrodynamics (SPH) is introduced to model problems involving the interaction between flowing water and soil deformation. Changes in soil porosity and associated permeability are automatically adjusted within this framework. The framework’s capabilities are presented and discussed for three geotechnical problems caused by flowing water. The comparison between simulation results and experiments shows that SPH with the proposed concept is capable of quantitatively simulating the hydro-mechanical processes beyond limit state with satisfactory agreement. To improve the computational stability, a correction procedure and a new algorithm for the selection of the optimal time step are introduced.

Keywords

Elastic–plastic constitutive model Geomechanics Smoothed Particle Hydrodynamics (SPH) Soil–water interaction Variable porosity and permeability 

Notes

Acknowledgements

The presented research is funded by the Australian Research Council Discovery Project, Hydraulic Erosion of Granular Structures: Experiments and Computational Simulations (DP120102188). The authors would like to thank Tilman Binttner for providing us his experimental results for the fluidized bed test. The second author would like to acknowledge the support from the Advance Queensland Fellowship programme (Grant number AQ-15188).

References

  1. 1.
    Alcrudo F, Mulet J (2007) Description of the Tous Dam break case study (Spain). J Hydraul Res 45(sup1):45–57CrossRefGoogle Scholar
  2. 2.
    Aulbach B, Ziegler M, Schüttrumpf H (2013) Design aid for the verification of resistance to failure by hydraulic heave. Proc Eng 57:113–119CrossRefGoogle Scholar
  3. 3.
    Bui HH (2007) Lagrangian mesh-free particle method (SPH) for large deformation and post-failure of geomaterial using elasto-plastic constitutive models. Ph.D. thesis, Ritsumeikan UniversityGoogle Scholar
  4. 4.
    Bui HH, Fukagawa R (2013) An improved SPH method for saturated soils and its application to investigate the mechanisms of embankment failure: case of hydrostatic pore-water pressure. Int J Numer Anal Methods Geomech 37(1):31–50CrossRefGoogle Scholar
  5. 5.
    Bui HH, Sako K, Fukagawa R (2007) Numerical simulation of soil–water interaction using smoothed particle hydrodynamics (SPH) method. J Terramech 44(5):339–346 (ISSN 0022-4898) CrossRefGoogle Scholar
  6. 6.
    Bui HH, Fukagawa R, Sako K, Ohno S (2008) Lagrangian meshfree particles method (SPH) for large deformation and failure flows of geomaterial using elastic–plastic soil constitutive model. Int J Numer Anal Methods Geomech 32(12):1537–1570.  https://doi.org/10.1002/nag.688 (ISSN 03639061 10969853) CrossRefzbMATHGoogle Scholar
  7. 7.
    Chen W-F, Mizuno E (1990) Nonlinear analysis in soil mechanics. Elsevier, Amsterdam (ISBN 0444430431) Google Scholar
  8. 8.
    Dehnen W, Aly H (2012) Improving convergence in smoothed particle hydrodynamics simulations without pairing instability. Mon Not R Astron Soc Lett 425(2):1068–1082 (ISSN 0035-8711) CrossRefGoogle Scholar
  9. 9.
    Den Adel H (1986) Analysis of permeability measurements using forchheimers equation. Technical report, TU DelftGoogle Scholar
  10. 10.
    Di Y, Sato T (2003) Liquefaction analysis of saturated soils taking into account variation in porosity and permeability with large deformation. Comput Geotech 30(7):623–635.  https://doi.org/10.1016/S0266-352X(03)00060-0 (ISSN 0266-352X) CrossRefGoogle Scholar
  11. 11.
    Fell R, Wan CF, Cyganiewicz J, Foster M (2003) Time for development of internal erosion and piping in embankment dams. J Geotech Geoenviron Eng 129(4):307–314CrossRefGoogle Scholar
  12. 12.
    Gholami Korzani M, Galindo-Torres SA, Williams D, Scheuermann A (2014) Numerical simulation of tank discharge using smoothed particle hydrodynamics. Appl Mech Mater 553:168–173.  https://doi.org/10.4028/www.scientific.net/AMM.553.168 (ISSN 3038350680) CrossRefGoogle Scholar
  13. 13.
    Korzani M Gholami, Galindo Torres S, Scheuermann A, Williams D J (2016) Smoothed particle hydrodynamics into the fluid dynamics of classical problems. Appl Mech Mater 846:73–78 (ISSN 3038355283) CrossRefGoogle Scholar
  14. 14.
    Korzani M. Gholami, Galindo Torres S, Scheuermann A, Williams DJ (2017) Smoothed particle hydrodynamics for investigating hydraulic and mechanical behaviour of an embankment under action of flooding and overburden loads. Comput Geotech.  https://doi.org/10.1016/j.compgeo.2017.08.014 Google Scholar
  15. 15.
    Korzani M Gholami, Galindo-Torres S A, Scheuermann A, Williams D J (2017) Parametric study on smoothed particle hydrodynamics for accurate determination of drag coefficient for a circular cylinder. Water Sci Eng 10(2):143–153.  https://doi.org/10.1016/j.wse.2017.06.001 (ISSN 1674-2370) CrossRefGoogle Scholar
  16. 16.
    Grabe J, Stefanova B (2014) Numerical modeling of saturated soils, based on smoothed particle hydrodynamics (SPH). Geotechnik 37(3):191–197.  https://doi.org/10.1002/gete.201300024 (ISSN 01726145) CrossRefGoogle Scholar
  17. 17.
    Gray J, Monaghan J, Swift R (2001) SPH elastic dynamics. Comput Methods Appl Mech Eng 190(49):6641–6662 (ISSN 0045-7825) CrossRefzbMATHGoogle Scholar
  18. 18.
    HTG (2015) Recommendations of the committee for waterfront structures harbours and waterways: EAU 2012. Wilhelm Ernst & Sohn, BerlinGoogle Scholar
  19. 19.
    Lobovsky JKL (2007) Smoothed particle hydrodynamics modelling of fluids and solids. Appl Comput Mech 1:10Google Scholar
  20. 20.
    Larese A, Rossi R, Oñate E, Toledo MÁ, Morán R, Campos H (2013) Numerical and experimental study of overtopping and failure of rockfill dams. Int J Geomech 15(4):04014060 (ISSN 1532-3641) CrossRefGoogle Scholar
  21. 21.
    Li S, Liu WK (2004) Meshfree particle methods. Springer, Berlin. ISBN 3540222561zbMATHGoogle Scholar
  22. 22.
    Liu D, Pang L, Xie B (2009) Typhoon disaster in china: prediction, prevention, and mitigation. Nat Hazards 49(3):421–436CrossRefGoogle Scholar
  23. 23.
    Liu GR, Liu MB (2005) Smoothed particle hydrodynamics: a meshfree particle method. World Scientific, Singapore.  https://doi.org/10.1142/5340 zbMATHGoogle Scholar
  24. 24.
    Lucy LB (1977) A numerical approach to the testing of the fission hypothesis. Astron J 82:1013–1024 (ISSN 0004-6256) CrossRefGoogle Scholar
  25. 25.
    Lyngfelt A, Leckner B, Mattisson T (2001) A fluidized-bed combustion process with inherent \(\text{ CO }_{2}\) separation; application of chemical-looping combustion. Chem Eng Sci 56(10):3101–3113CrossRefGoogle Scholar
  26. 26.
    MacDonald TC, Langridge-Monopolis J (1984) Breaching charateristics of dam failures. J Hydraul Eng 110(5):567–586CrossRefGoogle Scholar
  27. 27.
    Mercier F, Bonelli S, Golay F, Anselmet F, Philippe P, Borghi R (2015) Numerical modelling of concentrated leak erosion during hole erosion tests. Acta Geotech 10(3):319–332.  https://doi.org/10.1007/s11440-014-0349-5 (ISSN 1861-1133) CrossRefGoogle Scholar
  28. 28.
    Monaghan J (2006) Smoothed particle hydrodynamic simulations of shear flow. Mon Not R Astron Soc 365(1):199–213 (ISSN 1365-2966) CrossRefGoogle Scholar
  29. 29.
    Monaghan JJ (1992) Smoothed particle hydrodynamics. Annu Rev Astron Astrophys 30:543–574 (ISSN 0066-4146) CrossRefGoogle Scholar
  30. 30.
    Monaghan JJ (1994) Simulating free surface flows with sph. Journal of computational physics 110(2):399–406 (ISSN 0021-9991) CrossRefzbMATHGoogle Scholar
  31. 31.
    Monaghan JJ, Pongracic H (1985) Artificial viscosity for particle methods. Appl Numer Math 1(3):187–194CrossRefzbMATHGoogle Scholar
  32. 32.
    Morris JP, Fox PJ, Zhu Y (1997) Modeling low reynolds number incompressible flows using SPH. J Comput Phys 136(1):214–226 (ISSN 0021-9991) CrossRefzbMATHGoogle Scholar
  33. 33.
    Mukhlisin M, Taha MR, Kosugi K (2008) Numerical analysis of effective soil porosity and soil thickness effects on slope stability at a hillslope of weathered granitic soil formation. Geosci J 12(4):401–410.  https://doi.org/10.1007/s12303-008-0039-0 CrossRefGoogle Scholar
  34. 34.
    Nazem M, Sheng D, Carter JP, Sloan SW (2008) Arbitrary lagrangianeulerian method for large-strain consolidation problems. Int J Numer Anal Methods Geomech 32(9):1023–1050.  https://doi.org/10.1002/nag.657 (ISSN 1096-9853) CrossRefzbMATHGoogle Scholar
  35. 35.
    Peng C, Guo X, Wu W, Wang Y (2016) Unified modelling of granular media with smoothed particle hydrodynamics. Acta Geotechnica 11(6):1231–1247.  https://doi.org/10.1007/s11440-016-0496-y (ISSN 1861-1133) CrossRefGoogle Scholar
  36. 36.
    Sabetamal H, Nazem M, Carter J, Sloan S (2014) Large deformation dynamic analysis of saturated porous media with applications to penetration problems. Comput Geotech 55:117–131.  https://doi.org/10.1016/j.compgeo.2013.08.005 (ISSN 0266-352X) CrossRefGoogle Scholar
  37. 37.
    Serra-Llobet A, Tàbara JD, Sauri D (2013) The tous dam disaster of 1982 and the origins of integrated flood risk management in Spain. Nat Hazards 65(3):1981–1998CrossRefGoogle Scholar
  38. 38.
    Si Y (1998) The worlds most catastrophic dam failures. Qing (1998a), pp 25–38Google Scholar
  39. 39.
    Toledo M (1998) Safety of rockfill dams subject to overtopping. In: Berga L (ed) International symposium on new trends and guidelines on dam safety. Taylor & Francis, LondonGoogle Scholar
  40. 40.
    Tsai T-L, Jang W-S (2014) Deformation effects of porosity variation on soil consolidation caused by groundwater table decline. Environ Earth Sci 72(3):829–838.  https://doi.org/10.1007/s12665-013-3006-7 (ISSN 1866-6299) CrossRefGoogle Scholar
  41. 41.
    Van Gent MRA (1993) Stationary and oscillatory flow through coarse porous media. Technical report, TU DelftGoogle Scholar
  42. 42.
    Violeau D, Leroy A (2014) On the maximum time step in weakly compressible SPH. J Comput Phys 256:388–415.  https://doi.org/10.1016/j.jcp.2013.09.001 (ISSN 0021-9991) MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Wagner N, Schwing M, Scheuermann A (2014) Numerical 3-D FEM and experimental analysis of the open-ended coaxial line technique for microwave dielectric spectroscopy on soil. IEEE Trans Geosci Remote Sens 52(2):880–893.  https://doi.org/10.1109/TGRS.2013.2245138 (ISSN 0196-2892) CrossRefGoogle Scholar
  44. 44.
    Wan CF, Fell R (2004) Investigation of rate of erosion of soils in embankment dams. J Geotech Geoenviron Eng 130(4):373–380CrossRefGoogle Scholar
  45. 45.
    Wan CF, Fell R (2004) Laboratory tests on the rate of piping erosion of soils in embankment dams. Geotech Test J 27(3):1–9Google Scholar
  46. 46.
    Wan CF, Fell R (2004) Experimental investigation of internal instability of soils in embankment dams and their foundations. University of New South Wales, School of Civil and Environmental Engineering, SydneyGoogle Scholar
  47. 47.
    Wang H (2000) Theory of linear poroelasticity with applications to geomechanics and hydrogeology. Princeton University Press, PrincetonGoogle Scholar
  48. 48.
    Wang H, Xu W (2013) Relationship between permeability and strain of sandstone during the process of deformation and failure. Geotech Geol Eng 31(1):347–353.  https://doi.org/10.1007/s10706-012-9588-0 (ISSN 1573-1529) MathSciNetCrossRefGoogle Scholar
  49. 49.
    Wudtke R-B (2008) Failure mechanisms of hydraulic heave at excavations. In: 19th European young geotechnical engineers conference, Gyor, HungaryGoogle Scholar
  50. 50.
    Xu Y, Zhang L (2009) Breaching parameters for earth and rockfill dams. J Geotech Geoenviron Eng 135(12):1957–1970CrossRefGoogle Scholar
  51. 51.
    Yang X, Liu M, Peng S (2014) Smoothed particle hydrodynamics modeling of viscous liquid drop without tensile instability. Comput Fluids 92:199–208.  https://doi.org/10.1016/j.compfluid.2014.01.002 (ISSN 0045-7930) MathSciNetCrossRefGoogle Scholar
  52. 52.
    Zhang W, Maeda K, Saito H, Li Z, Huang Y (2016) Numerical analysis on seepage failures of dike due to water level-up and rainfall using a water–soil-coupled smoothed particle hydrodynamics model. Acta Geotech 11(6):1401–1418.  https://doi.org/10.1007/s11440-016-0488-y (ISSN 1861-1133) CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  1. 1.School of Civil EngineeringThe University of QueenslandSt Lucia, BrisbaneAustralia
  2. 2.School of EngineeringUniversity of LiverpoolLiverpoolUK

Personalised recommendations