Numerical investigation of tunneling in saturated soil: the role of construction and operation periods


This paper numerically investigates the slurry shield tunneling in fully saturated soils with different hydraulic conductivities in short- and long-term scales. A fully coupled hydromechanical three-dimensional model that accounts for the main aspects of tunnel construction and the hydromechanical interactions due to tunneling process is developed. An elasto-plastic constitutive model obeying a double hardening rule, namely hardening soil model, is employed in the numerical simulations. The research mainly focuses on assessing the influence of soil hydraulic conductivity and the method to simulate backfill grouting in the tail void on the evolution of ground subsidence, excess pore water pressure and lining forces. Two different consolidation schemes have been taken into account to computationally address the tunnel construction in soil with low and high hydraulic conductivities. In addition, different methods are employed to simulate the tail void grouting as a hydromechanical boundary condition and to study its effects on the model responses. Finally, the influences of infiltration of the fluidized particles of grouting suspension into the surrounding soil and its corresponding time–space hydraulic conductivity evolution on the displacements and lining forces are studied.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14


  1. 1.

    Adachi T, Jun L, Akinori K, Feng Z (2006) Numerical analysis of Biot consolidation problem based on an elasto-plastic constitutive model with strain softening in tunneling. In: Proceedings 7th geotechnical symposium, Nagoya, Japan, pp 105–110

  2. 2.

    Anagnostou G, Kovári K (1994) The face stability of slurry-shield-driven tunnels. Tunn Undergr Space Technol 9(2):165–174

    Article  Google Scholar 

  3. 3.

    Anagnostou G, Kovári K (1996) Face stability conditions earth-pressure-balanced shields. Tunn Undergr Space Technol 11(2):165–173

    Article  Google Scholar 

  4. 4.

    Atkinson JH, Mair RJ (1981) Soil mechanics aspects of soft ground tunnelling. Gr Eng 14(5):20

    Google Scholar 

  5. 5.

    Atkinson J, Potts D (1977) Stability of a shallow circular tunnel in cohesionless soil. Géotechnique 27(2):203–215

    Article  Google Scholar 

  6. 6.

    Bakker K (2003) Structural design of linings for bored tunnels in soft ground. Heron 48(1):33–63

    Google Scholar 

  7. 7.

    Balthaus H (1989) Tunnel face stability in slurry shield tunneling. In: Proceedings of the 12th international conference on soil mechanics and foundation engineering, pp 775–778

  8. 8.

    Bernat S, Cambou B (1998) Soil-structure interaction in shield tunnelling in soft soil. Comput Geotech 22(3/4):221–242

    Article  Google Scholar 

  9. 9.

    Bezuijen A (2007) Bentonite and grout flow around a TBM. In: Underground space—The 4th dimension of metropolises, pp 383–388

  10. 10.

    Bezuijen A, Huisman M, Mastbergen D (1996) Verdringingsprocessen bij gestuurd boren. Technical Report, Boren Tunnels en Leidingen

  11. 11.

    Bezuijen A, Talmon A (2008) Processes around a TBM. In: Proceedings of the 6th international symposium on geotechnical aspects of underground construction in soft ground, pp 48–56

  12. 12.

    Biot M (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164

    Article  MATH  Google Scholar 

  13. 13.

    Blom CBM (2002) Design philosophy of concrete linings for tunnels in soft soils. Ph.D. Thesis, Delft University of Technology

  14. 14.

    Broere W (2001) Tunnel face stability and New CPT applications. Ph.D. Thesis, Delft University of Technology

  15. 15.

    Broere W (2003) Influence of excess pore pressures on the stability of the tunnel face. In: Claiming the underground space, Amsterdan, The Netherlands, pp 759–765

  16. 16.

    Broms B, Bennermark H (1967) Stability of clay at vertical openings. J Soil Mech Found Div 93(1):71–94

    Google Scholar 

  17. 17.

    Clough G, Sweeney B, Finno R (1983) Measured soil response to EPB shield tunneling. J Geotech Eng 109(2):131–149

    Article  Google Scholar 

  18. 18.

    Davis E, Gunn M, Mair R, Seneviratne H (1980) The stability of shallow tunnels and underground openings in cohesive material. Géotechnique 30(4):397–416

    Article  Google Scholar 

  19. 19.

    de Boer R (2000) Theory of porous media: highlights in historical development and current state. Springer, Berlin

    Google Scholar 

  20. 20.

    Dias D, Kastner R, Maghazi M (1999) Three dimensional simulation of slurry shield in tunnelling. In: Proceedings international symposium on geotechnical aspects of underground construction in soft ground, Tokyo. Balkema, Rotterdam, pp 351–356

  21. 21.

    Do N, Dias D, Oreste P, Djeran-Maigre I (2014) Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunn Undergr Space Technol 42:40–51

    Article  Google Scholar 

  22. 22.

    Ehlers W, Bluhm J (2002) Porous media: theory, experiments, and numerical applications. Springer, Berlin

    Google Scholar 

  23. 23.

    Eilers H (1941) Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration. Kolloid-Zeitschrift 97:313–321

    Article  Google Scholar 

  24. 24.

    Eilers H (1943) Die Viskositäts- Konzentrationsabhängigkeit kolloider Systeme in organischen Lösungsmitteln. Kolloid-Zeitschrift 102:154–169

    Article  Google Scholar 

  25. 25.

    Ferronato M, Castelletto N, Gambolati G (2010) A fully coupled 3-D mixed finite element model of Biot consolidation. J Comput Phys 229(12):4813–4830

    Article  MATH  Google Scholar 

  26. 26.

    Finno R, Clough G (1985) Evaluation of soil response to EPB shield tunneling. J Geotech Eng 111(2):155–173

    Article  Google Scholar 

  27. 27.

    Franzius J, Potts D (2005) Influence of mesh geometry on three-dimensional finite-element analysis of tunnel excavation. Int J Geomech 5(3):256–266

    Article  Google Scholar 

  28. 28.

    Grimaldi GGA, Leonard A (2004) Three-dimensional modelling of tunnel excavation and lining. Comput Methods Geotech 31:171–183

    Article  Google Scholar 

  29. 29.

    Hawlader B, Lo K, Moore I (2006) Analysis of tunnels in shaly rock considering three-dimensional stress effects on swelling. Can Geotech J 42(1):1–12

    Article  Google Scholar 

  30. 30.

    Holt D, Griffiths D (1992) Transient analysis of excavations in soil. Comput Geotech 13(3):159–174

    Article  Google Scholar 

  31. 31.

    Horn N (1961) Horizontaler Erddruck auf senkrechte Abschlussflächen von Tunnelröhren. In: Landeskonferenz der ungarischen Tiefbauindustrie, pp 7–16

  32. 32.

    Jacky J (1944) The coefficient of earth pressure at-rest. J Soc Hung Archit Eng 78(22):355–358

  33. 33.

    Jancsecz S, Steiner W (1994) Face support for a large mix-shield in heterogenous ground conditions. In: Tunneling 94, Institution of Mining and Metallurgy

  34. 34.

    Kasper T, Meschke G (2004) A 3D finite element simulation model for TBM tunneling in soft ground. Int J Numer Anal Methods Geomech 28:1441–1460

    Article  MATH  Google Scholar 

  35. 35.

    Kilchert M, Karstedt J (1984) Schlitzwände als Trag- und Dichtungwände, Band 2, Standsicherheitsberechnung von Schlitzwänden. DIN 28–34

  36. 36.

    Kim S, Tonon F (2010) Face stability and required support pressure for TBM driven tunnels with ideal face membrane-drained case. Tunn Undergr Space Technol 25:526–542

    Article  Google Scholar 

  37. 37.

    Krause T (1987) Schildvortrieb mit flüssigkeits- und erdgestützter Ortsbrust. Promotion. Technischen Universität Carolo-Wilhelmina, Braunschweig

    Google Scholar 

  38. 38.

    Lavasan A, Schanz T (2017) Numerical investigation of hydro-mechanical interactions at the tail void of bored tunnels due to grouting. In: 9th International symposium on geotechnical aspects of underground construction in soft ground, Sao Paulo, Brazil

  39. 39.

    Leca E, Dormieux L (1990) Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique 40(4):581–606

    Article  Google Scholar 

  40. 40.

    Mohkam M, Wong Y (1989) Three dimensional stability analysis of the tunnel face under fluid pressure. In: Swoboda G (ed), Numerical methods in geomechanics. Balkema, Rotterdam, pp 2271–2278

  41. 41.

    Möller S, Vermeer P (2008) On numerical simulation of tunnel installation. Tunn Undergr Space Technol 23:461–475

    Article  Google Scholar 

  42. 42.

    Mollon G, Dias D, Soubra A (2011) Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield. Int J Numer Anal Methods Geomech 35(12):1363–1388

    Article  Google Scholar 

  43. 43.

    Mollon G, Dias D, Soubra A (2013) Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil. Int J Numer Anal Methods Geomech 37(13):2061–2083

    Article  Google Scholar 

  44. 44.

    Mori A, Tamura M, Kurihara K, Shibata H (1991) A suitable slurry pressure in slurry-type shield tunneling. In: Pearse GE (ed) Tunneling 91. Institution of Mining and Metallurgy, London, pp 361–369

    Google Scholar 

  45. 45.

    Müller-Kirchenbauer H (1977) Stability of slurry trenches in inhomogeneous subsoil. In: 9th International conference on soil mechanics and foundation engineering, pp 125–132

  46. 46.

    Nanninga N (1970) Foundation engineering. Technical Report, Delft University of Technology, CA

  47. 47.

    Ninić J, Meschke G (2017) Simulation based evaluation of time-variant loadings acting on tunnel linings during mechanized tunnel construction. Eng Struct 135:21–40

    Article  Google Scholar 

  48. 48.

    Pan X, Hudson J (1988) Simplified three-dimensional Hoek-Brown yield criterion. In: Proceedings of the international society of rock mechanics (ISRM) symposium, pp 95–103

  49. 49.

    Pinto F, Whittle A (2014) Ground movements due to shallow tunnels in soft ground. I: analytical solutions. J Geotech Geoenviron Eng 140(4):1–42

    Google Scholar 

  50. 50.

    Renner J, Steeb H (2015) Modeling of fluid transport in geothermal research. In: Freedom W et al (eds) Handbook of geomathematics. Springer, Berlin, pp 1443–1500

    Google Scholar 

  51. 51.

    Sakurai S (1978) Approximate time-dependent analysis of tunnel support structure considering progress of tunnel face. Int J Numer Anal Methods Geomech 1:159–175

    Article  Google Scholar 

  52. 52.

    Schanz T (1998) Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien. Habilitationsschrift, Mitteilung 45 des Instituts für Geotechnik; Universität Stuttgart

  53. 53.

    Schanz T, Vermeer P, Bonnier P (1999) The hardening soil model: formulation and verification. In: Proceedings of 1st international PLAXIS symposium on beyond 2000 in computational geotechnics. Balkema, pp 281–296

  54. 54.

    Schaufler A (2015) Multi-physical simulations of transport and infiltration of a suspension in granular porous media. Ph.D. Thesis, Ruhr-Universität Bochum

  55. 55.

    Schaufler A, Becker C, Steeb H (2013) Infiltration processes in cohesionless soils. J Appl Math Mech 93(2–3):138–146

    MathSciNet  Google Scholar 

  56. 56.

    Schaufler A, Becker C, Steeb H (2013) Simulation of the backfilling process with annular gap grouting mortar. In: Third international conference on computational methods in tunneling and subsurface engineering, pp 587–597

  57. 57.

    Schaufler A, Becker C, Steeb H, Scheuermann A (2012) A continuum model for infiltration problems. In: 6th International conference on scour and erosion ICSE6 Paris, pp 663–670

  58. 58.

    Schuerch R, Anagnostou G (2013) Analysis of the stand-up time of the tunnel face. In: World tunnel congress, Switzerland, Geneva, pp 709–714

  59. 59.

    Schuerch R, Anagnostou G (2013) The influence of the shear strength of the ground on the stand-up time of the tunnel face. In: Tunnelling and underground space construction for sustainable development, CIR Publishing Co., pp 297–300

  60. 60.

    Shin J, Potts D, Zdravković L (2002) Three-dimensional modelling of NATM tunnelling in decomposed granite soil. Géotechnique 52(3):187–200

    Article  Google Scholar 

  61. 61.

    Steeb H (2008) Non-equilibrium processes in porous media. Saarland University Saarbrücken, Habilitationsschrift

    Google Scholar 

  62. 62.

    Swoboda G, Abu-Krisha A (1999) Three-dimensional numerical modelling for TBM tunnelling in consolidated clay. Tunn Undergr Space Technol 14(2):327–333

    Article  Google Scholar 

  63. 63.

    Talmon A, Bezuijen A (2009) Simulating the consolidation of TBM grout at Noordplaspolder. Tunn Undergr Space Technol 24(5):493–499

    Article  Google Scholar 

  64. 64.

    Teil 5 (2012) Tunnelbau. In: Zusätzliche technische Vertragsbedingungen und Richtlinien für Ingenieurbauten. Bundesanstalt für Strassenwesen

  65. 65.

    Vakili K, Lavasan A, Datcheva M, Schanz T (2014) The influence of constitutive modeling in the numerical assessment of mechanized tunneling. In: Proceedings of 8th european conference on numerical methods in geotechnical engineering, vol. 2, pp 889–895

  66. 66.

    Vermeer P, Ruse N, Marcher T (2002) Tunnel heading stability in drained ground. Felsbau 20(6):8–18

    Google Scholar 

  67. 67.

    Verruijt A, Strack O (2008) Buoyancy of tunnels in soft soils. Géotechnique 58(6):513–515

    Article  Google Scholar 

  68. 68.

    Zhao C, Lavasan AA, Barciaga T, Zarev V, Datcheva M, Schanz T (2015) Model validation and calibration via back analysis for mechanized tunnel simulations—the Western Scheldt tunnel case. Comput Geotech 69:601–614

    Article  Google Scholar 

  69. 69.

    Zhao C, Lavasan A, Barciaga T, Kämper C, Mark P, Schanz T (2017) Prediction of tunnel lining forces and deformations using analytical and numerical solutions. Tunn Undergr Space Technol 64:164–176

    Article  Google Scholar 

  70. 70.

    Zhao C, Lavasan A, Barciaga T, Hölter R, Datcheva M, Schanz T (2014) Constitutive parameter adjustment for mechanized tunneling with reference to sub-system effects. In: 8th International conference on numerical methods and applications, Borovets, Bulgaria, pp 217–225

  71. 71.

    Zhao C, Lavasan A, Schanz T (2014) Sensitivity analysis of the model response in mechanized tunnelling simulation—a case study assessment. In: 4th International conference on engineering optimization, Lisbon, Portugal, pp 491–496

  72. 72.

    Zienkiewicz O, Owen D, Cormeau I (1974) Analysis of viscoplastic effects in pressure vessels by the finite element method. Nucl Eng Des 28:278–288

    Article  Google Scholar 

  73. 73.

    Zienkiewicz O, Chan A, Pastor M, Schrefler B, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, Hoboken

    Google Scholar 

Download references


Financial support was provided by the German Science Foundation (DFG) in the framework of the Collaborative Research Center SFB 837 (subprojects A5 and B4), and the first author was sponsored through a scholarship by Alexander von Humboldt Foundation, Germany. These supports are gratefully acknowledged.

Author information



Corresponding author

Correspondence to Arash Alimardani Lavasan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lavasan, A.A., Zhao, C., Barciaga, T. et al. Numerical investigation of tunneling in saturated soil: the role of construction and operation periods. Acta Geotech. 13, 671–691 (2018).

Download citation


  • Consolidation analysis
  • Hydraulic conductivity
  • Hydromechanical coupling
  • Infiltration
  • Mechanized tunneling
  • Saturated soil