Acta Geotechnica

, Volume 13, Issue 3, pp 671–691 | Cite as

Numerical investigation of tunneling in saturated soil: the role of construction and operation periods

  • Arash Alimardani LavasanEmail author
  • Chenyang Zhao
  • Thomas Barciaga
  • Alexander Schaufler
  • Holger Steeb
  • Tom Schanz
Research Paper


This paper numerically investigates the slurry shield tunneling in fully saturated soils with different hydraulic conductivities in short- and long-term scales. A fully coupled hydromechanical three-dimensional model that accounts for the main aspects of tunnel construction and the hydromechanical interactions due to tunneling process is developed. An elasto-plastic constitutive model obeying a double hardening rule, namely hardening soil model, is employed in the numerical simulations. The research mainly focuses on assessing the influence of soil hydraulic conductivity and the method to simulate backfill grouting in the tail void on the evolution of ground subsidence, excess pore water pressure and lining forces. Two different consolidation schemes have been taken into account to computationally address the tunnel construction in soil with low and high hydraulic conductivities. In addition, different methods are employed to simulate the tail void grouting as a hydromechanical boundary condition and to study its effects on the model responses. Finally, the influences of infiltration of the fluidized particles of grouting suspension into the surrounding soil and its corresponding time–space hydraulic conductivity evolution on the displacements and lining forces are studied.


Consolidation analysis Hydraulic conductivity Hydromechanical coupling Infiltration Mechanized tunneling Saturated soil 



Financial support was provided by the German Science Foundation (DFG) in the framework of the Collaborative Research Center SFB 837 (subprojects A5 and B4), and the first author was sponsored through a scholarship by Alexander von Humboldt Foundation, Germany. These supports are gratefully acknowledged.


  1. 1.
    Adachi T, Jun L, Akinori K, Feng Z (2006) Numerical analysis of Biot consolidation problem based on an elasto-plastic constitutive model with strain softening in tunneling. In: Proceedings 7th geotechnical symposium, Nagoya, Japan, pp 105–110Google Scholar
  2. 2.
    Anagnostou G, Kovári K (1994) The face stability of slurry-shield-driven tunnels. Tunn Undergr Space Technol 9(2):165–174CrossRefGoogle Scholar
  3. 3.
    Anagnostou G, Kovári K (1996) Face stability conditions earth-pressure-balanced shields. Tunn Undergr Space Technol 11(2):165–173CrossRefGoogle Scholar
  4. 4.
    Atkinson JH, Mair RJ (1981) Soil mechanics aspects of soft ground tunnelling. Gr Eng 14(5):20Google Scholar
  5. 5.
    Atkinson J, Potts D (1977) Stability of a shallow circular tunnel in cohesionless soil. Géotechnique 27(2):203–215CrossRefGoogle Scholar
  6. 6.
    Bakker K (2003) Structural design of linings for bored tunnels in soft ground. Heron 48(1):33–63Google Scholar
  7. 7.
    Balthaus H (1989) Tunnel face stability in slurry shield tunneling. In: Proceedings of the 12th international conference on soil mechanics and foundation engineering, pp 775–778Google Scholar
  8. 8.
    Bernat S, Cambou B (1998) Soil-structure interaction in shield tunnelling in soft soil. Comput Geotech 22(3/4):221–242CrossRefGoogle Scholar
  9. 9.
    Bezuijen A (2007) Bentonite and grout flow around a TBM. In: Underground space—The 4th dimension of metropolises, pp 383–388Google Scholar
  10. 10.
    Bezuijen A, Huisman M, Mastbergen D (1996) Verdringingsprocessen bij gestuurd boren. Technical Report, Boren Tunnels en LeidingenGoogle Scholar
  11. 11.
    Bezuijen A, Talmon A (2008) Processes around a TBM. In: Proceedings of the 6th international symposium on geotechnical aspects of underground construction in soft ground, pp 48–56Google Scholar
  12. 12.
    Biot M (1941) General theory of three-dimensional consolidation. J Appl Phys 12(2):155–164CrossRefzbMATHGoogle Scholar
  13. 13.
    Blom CBM (2002) Design philosophy of concrete linings for tunnels in soft soils. Ph.D. Thesis, Delft University of TechnologyGoogle Scholar
  14. 14.
    Broere W (2001) Tunnel face stability and New CPT applications. Ph.D. Thesis, Delft University of TechnologyGoogle Scholar
  15. 15.
    Broere W (2003) Influence of excess pore pressures on the stability of the tunnel face. In: Claiming the underground space, Amsterdan, The Netherlands, pp 759–765Google Scholar
  16. 16.
    Broms B, Bennermark H (1967) Stability of clay at vertical openings. J Soil Mech Found Div 93(1):71–94Google Scholar
  17. 17.
    Clough G, Sweeney B, Finno R (1983) Measured soil response to EPB shield tunneling. J Geotech Eng 109(2):131–149CrossRefGoogle Scholar
  18. 18.
    Davis E, Gunn M, Mair R, Seneviratne H (1980) The stability of shallow tunnels and underground openings in cohesive material. Géotechnique 30(4):397–416CrossRefGoogle Scholar
  19. 19.
    de Boer R (2000) Theory of porous media: highlights in historical development and current state. Springer, BerlinCrossRefzbMATHGoogle Scholar
  20. 20.
    Dias D, Kastner R, Maghazi M (1999) Three dimensional simulation of slurry shield in tunnelling. In: Proceedings international symposium on geotechnical aspects of underground construction in soft ground, Tokyo. Balkema, Rotterdam, pp 351–356Google Scholar
  21. 21.
    Do N, Dias D, Oreste P, Djeran-Maigre I (2014) Three-dimensional numerical simulation of a mechanized twin tunnels in soft ground. Tunn Undergr Space Technol 42:40–51CrossRefGoogle Scholar
  22. 22.
    Ehlers W, Bluhm J (2002) Porous media: theory, experiments, and numerical applications. Springer, BerlinCrossRefzbMATHGoogle Scholar
  23. 23.
    Eilers H (1941) Die Viskosität von Emulsionen hochviskoser Stoffe als Funktion der Konzentration. Kolloid-Zeitschrift 97:313–321CrossRefGoogle Scholar
  24. 24.
    Eilers H (1943) Die Viskositäts- Konzentrationsabhängigkeit kolloider Systeme in organischen Lösungsmitteln. Kolloid-Zeitschrift 102:154–169CrossRefGoogle Scholar
  25. 25.
    Ferronato M, Castelletto N, Gambolati G (2010) A fully coupled 3-D mixed finite element model of Biot consolidation. J Comput Phys 229(12):4813–4830CrossRefzbMATHGoogle Scholar
  26. 26.
    Finno R, Clough G (1985) Evaluation of soil response to EPB shield tunneling. J Geotech Eng 111(2):155–173CrossRefGoogle Scholar
  27. 27.
    Franzius J, Potts D (2005) Influence of mesh geometry on three-dimensional finite-element analysis of tunnel excavation. Int J Geomech 5(3):256–266CrossRefGoogle Scholar
  28. 28.
    Grimaldi GGA, Leonard A (2004) Three-dimensional modelling of tunnel excavation and lining. Comput Methods Geotech 31:171–183CrossRefGoogle Scholar
  29. 29.
    Hawlader B, Lo K, Moore I (2006) Analysis of tunnels in shaly rock considering three-dimensional stress effects on swelling. Can Geotech J 42(1):1–12CrossRefGoogle Scholar
  30. 30.
    Holt D, Griffiths D (1992) Transient analysis of excavations in soil. Comput Geotech 13(3):159–174CrossRefGoogle Scholar
  31. 31.
    Horn N (1961) Horizontaler Erddruck auf senkrechte Abschlussflächen von Tunnelröhren. In: Landeskonferenz der ungarischen Tiefbauindustrie, pp 7–16Google Scholar
  32. 32.
    Jacky J (1944) The coefficient of earth pressure at-rest. J Soc Hung Archit Eng 78(22):355–358Google Scholar
  33. 33.
    Jancsecz S, Steiner W (1994) Face support for a large mix-shield in heterogenous ground conditions. In: Tunneling 94, Institution of Mining and MetallurgyGoogle Scholar
  34. 34.
    Kasper T, Meschke G (2004) A 3D finite element simulation model for TBM tunneling in soft ground. Int J Numer Anal Methods Geomech 28:1441–1460CrossRefzbMATHGoogle Scholar
  35. 35.
    Kilchert M, Karstedt J (1984) Schlitzwände als Trag- und Dichtungwände, Band 2, Standsicherheitsberechnung von Schlitzwänden. DIN 28–34Google Scholar
  36. 36.
    Kim S, Tonon F (2010) Face stability and required support pressure for TBM driven tunnels with ideal face membrane-drained case. Tunn Undergr Space Technol 25:526–542CrossRefGoogle Scholar
  37. 37.
    Krause T (1987) Schildvortrieb mit flüssigkeits- und erdgestützter Ortsbrust. Promotion. Technischen Universität Carolo-Wilhelmina, BraunschweigGoogle Scholar
  38. 38.
    Lavasan A, Schanz T (2017) Numerical investigation of hydro-mechanical interactions at the tail void of bored tunnels due to grouting. In: 9th International symposium on geotechnical aspects of underground construction in soft ground, Sao Paulo, BrazilGoogle Scholar
  39. 39.
    Leca E, Dormieux L (1990) Upper and lower bound solutions for the face stability of shallow circular tunnels in frictional material. Géotechnique 40(4):581–606CrossRefGoogle Scholar
  40. 40.
    Mohkam M, Wong Y (1989) Three dimensional stability analysis of the tunnel face under fluid pressure. In: Swoboda G (ed), Numerical methods in geomechanics. Balkema, Rotterdam, pp 2271–2278Google Scholar
  41. 41.
    Möller S, Vermeer P (2008) On numerical simulation of tunnel installation. Tunn Undergr Space Technol 23:461–475CrossRefGoogle Scholar
  42. 42.
    Mollon G, Dias D, Soubra A (2011) Rotational failure mechanisms for the face stability analysis of tunnels driven by a pressurized shield. Int J Numer Anal Methods Geomech 35(12):1363–1388CrossRefGoogle Scholar
  43. 43.
    Mollon G, Dias D, Soubra A (2013) Continuous velocity fields for collapse and blowout of a pressurized tunnel face in purely cohesive soil. Int J Numer Anal Methods Geomech 37(13):2061–2083CrossRefGoogle Scholar
  44. 44.
    Mori A, Tamura M, Kurihara K, Shibata H (1991) A suitable slurry pressure in slurry-type shield tunneling. In: Pearse GE (ed) Tunneling 91. Institution of Mining and Metallurgy, London, pp 361–369Google Scholar
  45. 45.
    Müller-Kirchenbauer H (1977) Stability of slurry trenches in inhomogeneous subsoil. In: 9th International conference on soil mechanics and foundation engineering, pp 125–132Google Scholar
  46. 46.
    Nanninga N (1970) Foundation engineering. Technical Report, Delft University of Technology, CAGoogle Scholar
  47. 47.
    Ninić J, Meschke G (2017) Simulation based evaluation of time-variant loadings acting on tunnel linings during mechanized tunnel construction. Eng Struct 135:21–40CrossRefGoogle Scholar
  48. 48.
    Pan X, Hudson J (1988) Simplified three-dimensional Hoek-Brown yield criterion. In: Proceedings of the international society of rock mechanics (ISRM) symposium, pp 95–103Google Scholar
  49. 49.
    Pinto F, Whittle A (2014) Ground movements due to shallow tunnels in soft ground. I: analytical solutions. J Geotech Geoenviron Eng 140(4):1–42Google Scholar
  50. 50.
    Renner J, Steeb H (2015) Modeling of fluid transport in geothermal research. In: Freedom W et al (eds) Handbook of geomathematics. Springer, Berlin, pp 1443–1500CrossRefGoogle Scholar
  51. 51.
    Sakurai S (1978) Approximate time-dependent analysis of tunnel support structure considering progress of tunnel face. Int J Numer Anal Methods Geomech 1:159–175CrossRefGoogle Scholar
  52. 52.
    Schanz T (1998) Zur Modellierung des mechanischen Verhaltens von Reibungsmaterialien. Habilitationsschrift, Mitteilung 45 des Instituts für Geotechnik; Universität StuttgartGoogle Scholar
  53. 53.
    Schanz T, Vermeer P, Bonnier P (1999) The hardening soil model: formulation and verification. In: Proceedings of 1st international PLAXIS symposium on beyond 2000 in computational geotechnics. Balkema, pp 281–296Google Scholar
  54. 54.
    Schaufler A (2015) Multi-physical simulations of transport and infiltration of a suspension in granular porous media. Ph.D. Thesis, Ruhr-Universität BochumGoogle Scholar
  55. 55.
    Schaufler A, Becker C, Steeb H (2013) Infiltration processes in cohesionless soils. J Appl Math Mech 93(2–3):138–146MathSciNetGoogle Scholar
  56. 56.
    Schaufler A, Becker C, Steeb H (2013) Simulation of the backfilling process with annular gap grouting mortar. In: Third international conference on computational methods in tunneling and subsurface engineering, pp 587–597Google Scholar
  57. 57.
    Schaufler A, Becker C, Steeb H, Scheuermann A (2012) A continuum model for infiltration problems. In: 6th International conference on scour and erosion ICSE6 Paris, pp 663–670Google Scholar
  58. 58.
    Schuerch R, Anagnostou G (2013) Analysis of the stand-up time of the tunnel face. In: World tunnel congress, Switzerland, Geneva, pp 709–714Google Scholar
  59. 59.
    Schuerch R, Anagnostou G (2013) The influence of the shear strength of the ground on the stand-up time of the tunnel face. In: Tunnelling and underground space construction for sustainable development, CIR Publishing Co., pp 297–300Google Scholar
  60. 60.
    Shin J, Potts D, Zdravković L (2002) Three-dimensional modelling of NATM tunnelling in decomposed granite soil. Géotechnique 52(3):187–200CrossRefGoogle Scholar
  61. 61.
    Steeb H (2008) Non-equilibrium processes in porous media. Saarland University Saarbrücken, HabilitationsschriftGoogle Scholar
  62. 62.
    Swoboda G, Abu-Krisha A (1999) Three-dimensional numerical modelling for TBM tunnelling in consolidated clay. Tunn Undergr Space Technol 14(2):327–333CrossRefGoogle Scholar
  63. 63.
    Talmon A, Bezuijen A (2009) Simulating the consolidation of TBM grout at Noordplaspolder. Tunn Undergr Space Technol 24(5):493–499CrossRefGoogle Scholar
  64. 64.
    Teil 5 (2012) Tunnelbau. In: Zusätzliche technische Vertragsbedingungen und Richtlinien für Ingenieurbauten. Bundesanstalt für StrassenwesenGoogle Scholar
  65. 65.
    Vakili K, Lavasan A, Datcheva M, Schanz T (2014) The influence of constitutive modeling in the numerical assessment of mechanized tunneling. In: Proceedings of 8th european conference on numerical methods in geotechnical engineering, vol. 2, pp 889–895Google Scholar
  66. 66.
    Vermeer P, Ruse N, Marcher T (2002) Tunnel heading stability in drained ground. Felsbau 20(6):8–18Google Scholar
  67. 67.
    Verruijt A, Strack O (2008) Buoyancy of tunnels in soft soils. Géotechnique 58(6):513–515CrossRefGoogle Scholar
  68. 68.
    Zhao C, Lavasan AA, Barciaga T, Zarev V, Datcheva M, Schanz T (2015) Model validation and calibration via back analysis for mechanized tunnel simulations—the Western Scheldt tunnel case. Comput Geotech 69:601–614CrossRefGoogle Scholar
  69. 69.
    Zhao C, Lavasan A, Barciaga T, Kämper C, Mark P, Schanz T (2017) Prediction of tunnel lining forces and deformations using analytical and numerical solutions. Tunn Undergr Space Technol 64:164–176CrossRefGoogle Scholar
  70. 70.
    Zhao C, Lavasan A, Barciaga T, Hölter R, Datcheva M, Schanz T (2014) Constitutive parameter adjustment for mechanized tunneling with reference to sub-system effects. In: 8th International conference on numerical methods and applications, Borovets, Bulgaria, pp 217–225Google Scholar
  71. 71.
    Zhao C, Lavasan A, Schanz T (2014) Sensitivity analysis of the model response in mechanized tunnelling simulation—a case study assessment. In: 4th International conference on engineering optimization, Lisbon, Portugal, pp 491–496Google Scholar
  72. 72.
    Zienkiewicz O, Owen D, Cormeau I (1974) Analysis of viscoplastic effects in pressure vessels by the finite element method. Nucl Eng Des 28:278–288CrossRefGoogle Scholar
  73. 73.
    Zienkiewicz O, Chan A, Pastor M, Schrefler B, Shiomi T (1999) Computational geomechanics with special reference to earthquake engineering. Wiley, HobokenzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Arash Alimardani Lavasan
    • 1
    Email author
  • Chenyang Zhao
    • 1
  • Thomas Barciaga
    • 1
  • Alexander Schaufler
    • 2
  • Holger Steeb
    • 3
    • 4
  • Tom Schanz
    • 1
  1. 1.Chair of Foundation Engineering, Soil and Rock MechanicsRuhr-Universität BochumBochumGermany
  2. 2.Institute of MechanicsRuhr-Universität BochumBochumGermany
  3. 3.Institute of Mechanics (CE)University of StuttgartStuttgartGermany
  4. 4.Stuttgart Research Center for Simulation Technology (SRC Sim Tech)StuttgartGermany

Personalised recommendations